in Bradbeer

-Rob
AIR|

E

N[LINIG]-

e

0 (USIEL- [ TIHIE]

u




Robin Bradbeer

LEARNING TO USE
2 X SPEC TRUM
COMPUTER

This beginners’ guide really does begin at the beginning. It assumes that you
want to learn to use the ZX Spectrum in your work or leisure, not become a
theorist in computing. Learning to Use the ZX Spectrum provides a simple,
down-to-earth, jargon-free introduction to the machine and its software. Follow
the text and illustrations and you will end up operating the ZX Spectrum and
understanding its many capabilities.

Many applications of the ZX Spectrum are described, including business,
educational and hobby uses. Additionally, a simple and direct introduction to
programming the ZX Spectrum is given in a way which will help motivate the user
to further investigation of the ZX Spectrum’s capabilities. The ZX Spectrum’s
ability to produce and draw pictures and diagrams is explored and explained, and
programs for a large number of graphics applications are presented.

This book will appeal to new ZX Spectrum owners, students in schools and
colleges where ZX Spectrums are used, businessmen who wish to learn about
how to use the ZX Spectrum and program it. It will help those who are already
learning to use the ZX Spectrum, but find their current manuals difficult to follow.
It also provides the ‘would-be’ purchaser of microcomputers with information on
how the ZX Spectrum operates and performs, which will help him to assess
whether the machine will suit his need.

About the series
This series of books has been designed to provide potential users, established
users, teachers, students and businessmen with standardised introductions to
the use of popular microcomputers. Extensive use has been made of photo-
graphs, diagrams and drawings to illustrate the text and make it easy to read and
understand.

As the layout and content of the books in the series are similar, each book may
be used in conjunction with others for purposes of comparison of performance
and capabilities. The Learning to Use series is an inexpensive way of checking
that the would-be purchasers’ provisional choice of machine is the correct one.

The series is open-ended and will cover new models of microcomputers as
they appear on the market.

Other titles in the series
Learning to Use the PET Computer
Learning to Use the BBC Microcomputer
Learning to Use the VIC-20 Computer
Learning to Use the ZX81 Computer

Gower
ISBN 0 566 03481 6 ’

Gower Publishing Company Limited, Gower House, Croft Road,
Aldershot, Hampshire GU11 3HR, England




Robin Bradbeer | EARNING TO LISE THE 7ZX SPECTRUM COMPUTER (S



Learning to Use the ZX Spectrum



Learning to Use the
/X Spectrum

by Robin Bradbeer

Gower



© Robin Bradbeer, 1982

Allrights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior
permission of Gower Publishing Company Limited.

Published by

Gower Publishing Company Limited,
Gower House, Croft Road, Aldershot,
Hampshire GU11 3HR, England

British Library Cataloguing in Publication Data

Bradbeer, Robin
Learning to Use the ZX Spectrum
1. Sinclair ZX Spectrum (Computer)
1. Title
001.64°04 QA76.8.562/

ISBN 0-566-03481-6
Ginn School Edition: ISBN 0-602-22633-3

Printed and bound in Great Britain
at The Pitman Press, Bath




Contents

List of Figures
Foreword

Chapter1. IntroductiontotheZX Spectrum______
Whatis the ZX Spectrum?
How was it developed?
What canitdo?
How can the ZX Spectrum be extended?
What are some typical applications of the ZX
Spectrum?
Summary

Chapter2. Usingthe ZX Spectrum
Switching on
Loading a program
The keyboard
Editing
Giving simple commands to the ZX Spectrum
The ZX Spectrum as a calculator
Printing pictures
Summary
Self-test questions

Chapter3. Introduction to programming
Writing and running simple programs
Some more BASIC instructions
Input
Decisions
Repetition
More programs
Saving programs
Saving a program on a cassette
Using the printer
Summary
Self-test questions

Chapter4. Graphics
The screen and memory
Putting a character on the screen
Producing a drawing
Screen patterns
Colour graphics

vii

X

[« )WV, SV S R

11
11
12
13
16
16
18
19
21
21

23
23
26
27
28
31
32
35
35
36
37
37

39
40
41
41

.45
48



Movement )
Animation
User definable graphics
Dynamic simulation
Sound

Chapter5. Special features of the ZX Spectrum ___
Specification of the ZX Spectrum
An ‘exploded view’ of the ZX Spectrum
Special features

The ZX Spectrum’s clock

Examining the contents of a location

Available storage
The user port
How the ZX Spectrum stores a program
Special locations

Appendix 1 Further reading
Appendix 2 Differences between ZX Spectrum and

ZX81BASIC
Appendix 3  Glossary

vi

49
51
54

56

59
59
60
61
61
62
62
62
63
65

66

69
72




List of Figures

The ZX Spectrum

Inside the ZX Spectrum
A drawing on the ZX Spectrum screen

A cassette and a microdrive

A cassette unit attached to the ZX Spectrum

A printer attached to the ZX Spectrum
Back view of the ZX Spectrum, showing connectors

b bk e bt
N OV B W N =

Screen display when the ZX Spectrum is switched on

Dialogue after loading the program “Wraptrap” from cassette
‘Space Invader’ and the graphics characters from which it is made
A string stored in the memory

Numbers stored in the memory aftera=3:b =4

Symbols for graphics and control
Two PRINT commands and their results

The results of running a program

Flow chart for simple maths drill program

Flow chart for improved maths drill program
Two parallel arrays for translation program

PLwNe— Ok W —

Chart showing position of characters and pixels

Graphics characters and their associated keys

AR WWWW NN

W N —

(a) Butterfly. (b) Butterfly with grid. (¢) Butterfly composed of graphics
characters. (d) Outline of image plotted on screen

4.4 Butterfly as displayed on the screen

4.5 Program scheme for screen patterns

4.6 Screen pattern

4.7 Control keys and directions

4.8 Screenlocations and directions

4.9 Flow chart for mobile display program

4.10 Two ‘Space Invader’ frames from animation program

4.11 8 x 8 graphics grid —and how to translate a ‘man’ into BIN numbers
4.12 How to get notes using BEEP command

5.1 Diagram of inside of ZX Spectrum showing chips, etc.

5.2 Edge connector allocation
5.3 How the ZX Spectrum stores a program

vii



Foreword

The ZX Spectrum, from Sinclair Research, is the latest in a very short line
of microcomputers that started with the ZX80 in 1980 and then the ZX81
in 1981. Over one million of these computers have been sold.

The ZX Spectrum follows the design philosophy of these two previous
computers but has the added bonus of colour, sound and much more
memory. This book is designed to complement the instruction books
provided by the manufacturers and takes some of the ideas just hinted atin
these and shows the reader how to get more from their machine.

Like the other books in this series this book is not designed to be a
programming manual. There are many others on the market that do this
already. What it does do is introduce the reader to the computer in a rather
painless way and hopefully an enjoyable way too. The introductory
chapters take the reader carefully through setting up procedures and then
on to very elementary programming. The later chapters investigate the
graphics sound and colour capabilities of the system and are amply
illustrated by a host of programs, all explained. Finally a series of
appendices cover such topics as software, plug in attachments, magazines
and books and compatability with preceding Sinclair computers.

I should like to thank Garry Marshall for doing the initial work on the
first book in this series, and all those at Gower who patiently read, and

reread, the manuscripts.
R.T.B.






Chapter 1
Introduction to the ZX

Spectrum

What is the ZX Spectrum?

The ZX Spectrum is a computer. It is usually called a microcomputer
because it is extremely small compared to early computers, and also
because its electronic ‘heart’ is a microprocessor. As you can see from
Figure 1.1 overleaf, the ZX Spectrum has a keyboard, which is set out in
the same way as that of a conventional typewriter, although using a smaller
keyboard than that of a normal typewriter. Inside, as is shown in Figure
1.2 overleaf, there are a number of integrated circuits, one of which is the
microprocessor, while others provide the ZX Spectrum memory and can
store information. Initially, there is no need to worry about what is inside
the ZX Spectrum. The electronic circuitry and devices which make the
ZX Spectrum work are fascinating, but a detailed understanding of them
is not necessary in order to make use of the ZX Spectrum — and this
introductory book is about using the ZX Spectrum.

The keyboard is for communicating with the ZX Spectrum:
commands for it to obey and information for it to store can simply be typed
out. Because the keyboard is arranged in the same way as that of a
typewriter, those with a knowledge of typing will be able to find their way
round easily. Anything typed on the keyboard is automatically displayed
on the television screen.

The ZX Spectrum possesses a number of screen editing facilities, so
that typing errors can be simply corrected with the aid of special keys, and
amendments can be made in a simple and natural fashion. In fact, the ZX
Spectrum’s screen editing system has been very carefully thought out, and
is easy to use after a little practice. It works in the natural way that most
people expect it to.

Besides letters and numbers, the ZX Spectrum can also produce
graphics symbols with the aid of which it is possible to type out a picture in
much the same way as a paragraph of text is typed. Figure 1.3 shows a
drawing that has been produced by the ZX Spectrum on a television
screen. This easy access to graphics is a tremendous bonus, for the
imaginative use of graphics enlivens all sorts of applications, ranging from
games programs to educational programs and the presentation of

.

1



Figure1.1 The ZX Spectrume

Figure 1.2 Inside the ZX Spectrum.




Figure 1.3 A drawingon the ZX Spectrum screen.

information in a business package.

So the ZX Spectrum is a computer that is small enough to be easily
portable and to use in the home. To use it, all that it is necessary is to plug
the adaptor into the mains electricity supply, plug a television into the
appropriate socket on the side and turn it on. Further, as soon as it is
switched on, a computer language with which to communicate with the
ZX Spectrum automatically becomes available. This language is BASIC,
and it enables the user to issue commands which are promptly and
automatically obeyed by the ZX Spectrum.

How was it developed?

The event that signalled the advent of microelectronics, and hence of
microcomputers, was the space race of the 1960s between the USA and
Russia. Because American rockets were less powerful than those of the
Russians, the Americans needed to reduce the weight, and hence the size,
of everything that had to be carried by their rockets including all the
electronics. This stimulated the American electronics industry to
investigate and develop means of miniaturising their electronic circuitry.
These developments culminated in the microprocessor, which in addition
&



to being extremely $mall (given its capabilities) is a multi-purpose device
in the sense that it is programmable, and can perform any electronic
function for which it can be programmed. This versatility has led to the
use of microprocessors in a tremendous number of applications and the
consequent mass production of microprocessors has caused the cost per
unit to drop to a matter of a few pence.

The ZX Spectrum is based on the Z80 microprocessor, which is
manufactured by NEC of Japan. In a sense, a ZX Spectrum is an easy-to-
use microprocessor because although the microprocessor in the ZX
Spectrum actually does all the hard work — all the computing — it has been
made the core of a system designed in such a way that the user can tap its
potential without necessarily needing any knowledge of the details of how
it works.

Incidentally, the microprocessor used in the ZX Spectrum is the same
as that used in many applications in industry and commerce. It is probably
the most popular microprocessor in use today. Ironically, given the
military origins of microelectronics, these microprocessors are more
advanced examples of the technology than those used in the guidance
systems of inter-continental ballistic missiles!

The ZX Spectrum is the third in series of small computers made by
Sinclair Research, based in Cambridge, England. The first was the ZX80,
introduced in 1980, and this was the first computer to sell for less than
£100. Its successor, the ZX81, was introduced in 1981, and was essentially
an upgrade of the ZX80. The total worldwide sales of these two machines
is expected to reach one million by the beginning of 1983. This makes
them the world’s best selling microcomputer. Both were aimed at the
domestic market and were designed to fit on to a domestic TV set. They
were very limited in their capabilities but were ideally designed for the
first-time user who did not want to spend too much money getting started.
The Spectrum is altogether a different machine, with colour graphics,
sound and the ability to have many different peripherals attached to it.
The Spectrum comes in two models, one with 16K bytes of memory, the
other with 48K bytes. The Spectrum is not totally compatible with the
7ZX81/80 and a list of the more obvious differences is given in Appendix 2.

An important difference between the different models is that they
make available different amounts of memory to the user, so that, for
example, the 48K model provides treble the storage capacity of the 16K
model. Any program that is to be used on the ZX Spectrum requires a
certain amount of memory in which to store it, and the more memory that
your Spectrum possesses the wider will be the range of programs that it
can store and run. Programs of any length, including many business
programs, can require a great deal of memory. As a rough guide, the 48K

4



Spectrum is almost certainly necessary for sophisticated business
packages, while for running games programs the 16K Spectrum may well
be adequate.

What can it do?

Fundamentally, a ZX Spectrum can do anything that you can tell it to do,
which is to say that it will obey any instruction or set of instructions that it
is given. A set of instructions to the computer is usually called a computer
program, so the ZX Spectrum, like any other computer, executes
programs and does what they tell it to do. Thus one way to make use of a
ZX Spectrum is to learn to program it in its own language. As we have
seen, its natural language is BASIC. This is a simple programming
language that is designed to be easy both to learn and to use. It is not
understood directly by the microprocessor in the ZX Spectrum, and is
translated to the rather restricted code understood by the microprocessor
which is known as its machine code. It is also possible to program the ZX
Spectrum in machine code, and although this is considerably more
difficult to do, it gives programs that are executed more quickly because
the translation stage is omitted.

However, it is not essential to be an expert programmer to use the ZX
Spectrum, since programs can be obtained for it from a number of
commercial sources. These programs are recorded on cassettes. The
cassettes are of the same type as good quality audio cassettes: Figure 1.4
shows a cassette and a microdrive. To transfer a program from a cassette to

Figure 1.4 A cassette and a microdrive.




the ZX Spectrum sb that it can run the program a cassette recorder must
be used. Figure 1.5 shows a cassette unit attached to the ZX Spectrum.
Programs can bé obtained from Sinclair which maintains a small
catalogue, including games and educational programs. There are many
other companies which sell programs for the ZX Spectrum and which
advertise regularly in the popular computing magazines.

These examples illustrate that the ZX Spectrum can be used in a
variety of ways without the user having any knowledge of how to program
it. Nevertheless, it is often useful to be able to program, if only to amend
or modify an existing program. Besides, programming is fun, it is easy to
do, and it provides a means of expressing and communicating your own
ideas to the computer so that it can test them for you.

How can the ZX Spectrum be extended?

Besides performing computations and storing information the ZX
Spectrum can, again like any other computer, be used to control other
devices. Units that can be connected to the ZX Spectrum and whose
operation can then be controlled by it are called ‘peripherals’. We have

Figure 1.5 A cassette unit attached to the ZX Spectrum.




S

already met one of them in the cassette recorder. These units are the ones
that are used for permanent storage of information by means of magnetic
patterns on tape.

It is useful in many applications to have printed output, for example to
provide a permanent record of the results of a computation, and for this
purpose the ZX printer can be attached to the ZX Spectrum (see Figure
1.6). The ZX printers are able to reproduce the graphics symbols as well as

Figure 1.6 A printer attached to the ZX Spectrum.

letters and numbers so that it can print pictures as well as text.

Other than the tape recorder, power supply and television set, other
peripherals can be attached to the ZX Spectrum. We have already seen
that the ZX printer will give a printed output. Sinclair also make a number
of other devices that can be added to the computer. These include fast and
large memory devices like the Microfloppy and interface units that allow
the Spectrum to be connected to other computers and to normal
communications networks and standard printers. Other manufacturers
also make peripherals for the ZX range of computers, and although the
connections and driving software are different for the Spectrum compared
to the ZX81 most of the latter’s peripherals can be adapted quite easily.

8

7



Any peripherals attached to the ZX Spectrum use the connectors at the
rear. Figure 1.7 shows the back view of the ZX Spectrum with the
connection sockets for peripherals. At the rear of the computer are four
jack sockets. From left to right, these are for power supply (9 volts dc from
mains adaptor), two tape recorder connections and a video output that
connects to the television set. Page 6 of the Sinclair Introductory booklet
explains these connections in detail. Also at the rear of the computer is an
edge connector that allows peripherals to be connected.

What are some typical applications of the ZX Spectrum?

The ZX Spectrum and its predecessors, the ZX80 and ZX81, have been
used in many applications since their introduction in 1980. The areas in
which they have been used can broadly be classified as in the home for
recreational and personal use, in educational institutions, and in industry.

For personal use there are games programs of many kinds. Using the
ZX Spectrum for playing games has frequently been criticised as a
frivolous use of a personal computer, and there is no doubt that many
games are lighthearted, but even these can provide relaxation and
entertainment. However, there are many imaginative games which also
have educational value. They can teach or help to develop attributes
ranging from simple manipulation and coordination skills in children to
the mental disciplines required to find solution methods for puzzles and to
test strategy and tactics in games played against the computer. There are
now chess-playing programs of a formidable standard, and it would seem
perverse to argue that playing chess is a frivolous activity.

The presence of a ZX Spectrum in the home means that educational
activities need not be restricted to schools and colleges. Simple computer-
assisted learning packages are available for the ZX Spectrum, and they can
be used just as effectively at home as at school. Computer-assisted learning
is not, in any case, intended to replace teachers, but to assist them by

Figure 1.7 Back view of the ZX Spectrum, showing connectors.




providing another educational tool. In a post-industrial society it is
important to expose everyone, and particularly children, to the current
technology so that they may be aware of it, appreciate its capabilities, and
thus be in a position to take advantage of it or to develop it in some way.
The presence of a ZX Spectrum as an everyday item in the home or at
school can help to achieve this objective.

In schools, the ZX Spectrum has many valid uses ranging from
computer-assisted learning to the use of quiz programs to instructional
programs. There are excellent examples of the latter dealing with how to
program in BASIC which have been used in many schools, colleges and
universities.

The colour and sound capabilities of the Spectrum make it ideal for
educational work, especially at a primary school level. The ability to have
quite high resolution graphics and the ease of use make it very good in the
classroom. The large memory storage of the Spectrum also means that it
can be used in the small business area, although it is not really designed for
this purpose. The keyboard mitigates against it being used as a word
processing system, but the addition of a decent printer and the
Microfloppy drives make it very useful as a means of storing and
manipulating large amounts of data. In any activity where large amounts
of information have to be stored and certain items have to be retrieved, it is
almost essential to use the Microfloppy rather than a cassette unit for
storage. This is not only because a Microfloppy has a greater storage
capacity, but also because it permits an item of information to be accessed
more rapidly. Any item stored on a Microfloppy can be accessed almost at
once regardless of its position. By contrast, on a cassette it is necessary to
wind the tape as far as the required item, so that to reach some items may
take rather a long time.

VisiCalc type programs have proved so successful as planning aids for
managers that computers have been purchased purely to run more
programs. They are planning and modelling programs that facilitate
planning and forecasting by allowing the user to model his business and
then to examine the effects on it that result from making particular
changes. These programs are one example of how support for
microcomputers has, in places, outstripped the facilities offered by the
part of the computer industry that is geared to larger computers.
Conventional computer people have been known to be contemptuous of
microcomputers and their capabilities, but the enterprise shown in the
microcomputer world has led to some rather abrupt reversals in attitudes.

Several programs for filing information are available for
microcomputers. They are called, variously, ‘data management systems’,
‘database systems’ and ‘information retrieval systems’. In essence they

&

9



permit the user to dormat, or structure, information, to store as much
information as required and then to search the stored information for
items having particular properties so that they can be displayed or typed
out.

All these activities can be performed using existing programs. By
learning to program the ZX Spectrum, you can write your own programs,
not only to express your own ideas, but also because, as in most spheres,
what you can buy seldom does exactly what you would like it to. Since the
ZX Spectrum is much faster and more reliable than any person at activities
such as numerical calculations, it would seem sensible to get the ZX
Spectrum to do them. Besides acting as a source of entertainment,
education and, in a limited way, as a business convenience, the ZX
Spectrum can, in this information age, be used to extend and amplify the
human brain.

Summary

The ZX Spectrum is a small computer, or microcomputer. The major
novelty of a microcomputer is its size rather than its ability to compute.
However, the smallness of a microcomputer means that its computing
power is available so conveniently that it can be used as a personal tool in
the home or at work. This small size is a direct result of recent
technological developments.

The ZX Spectrum can be used in many ways, but its main areas of
application are in business, education and for personal entertainment.
Because programs can be bought to perform many tasks in these areas, the
ZX Spectrum can be usefully employed almost as soon as it is acquired and
with a minimum of expertise. The user can also run self-written programs
using the BASIC language, which is not difficult to learn.

The capabilities of a ZX Spectrum can be extended in a variety of ways
either by adding extras to the ZX Spectrum itself or by the acquisition of
further units such as a printer, which can be attached to the ZX Spectrum
and used in conjunction with it.

10



Chapter 2

Using the ZX Spectrum

Switching on

When the ZX Spectrum is connected to a television set and switched on a
display such as the one shown in Figure 2.1 appears on the screen. The
Sinclair copyright message appears in the bottom of the screen. This
indicates that the computer is now ready for use.

The screen is wide enough to take 32 symbols, or characters, on one
line. As soon as 32 characters have been placed on the same line, the cursor
automatically moves to the beginning of the next line, and the next
character to be typed will be placed there. In fact the screen can hold 22
lines, each of 32 characters, so that a symbol can be placed in any of 22 X
32 = 704 positions on the screen. (Two other lines are available at the
bottom of the screen for messages.)

Figure 2.1 Screen display when the ZX Spectrum is switched on.

11



Loading a program

Probably the most enjoyable and painless way to become familiar with the
ZX Spectrum and its keyboard is to use the ZX Spectrum to play a game
that requires the user to give responses from the keyboard. Popular games
such as ‘space invaders’ or ‘sub-bomb’ are ideal for this purpose.

Loading a program from a cassette into the Spectrum is very simple.
The Sinclair Introductory Booklet gives a full account of how to do this so
the following is a brief synopsis. First make sure that the cassette recorder
is connected to the computer. For loading it is only necessary to have one
lead connected, i.e. the lead from the external speaker or earphone socket
on the recorder to the ear socket at the rear of the Spectrum. Insert the
cassette containing the program and make sure that it is completely
rewound, or if the recorder has a digital counter make sure that the tape is
in the right place. It is a good idea to clear the computer screen before
starting the procedure as characters on the screen can sometimes make it
difficult to see what is happening. This can be achieved by keying the CLS
command (on the V key), and keying ENTER. The series of letters and
numbers will appear at the bottom of the screen, which tells us that
everything is ‘OK’. The simplest way of clearing the screen and anything
that may be in the computer’s memory is to turn the computer off and then
on again! If you do this then the copyright message should appear as
before.

Pressing the ] key will cause the word LOAD to appear at the bottom
of the screen. To load in the program we need to tell the computer what
the name of the program is and we need to do this exactly. The exact name
is typed in following a quote (**) symbol which is obtained by pressing the
P key at the same time as the red symbols shift key. When the exact name
has been keyed in it is followed by another quote symbol.

The PLAY key of the recorder should now be pushed and followed by
the ENTER key on the computer. The screen will clear and the border
will change colour. If the television is tuned in correctly the following
sequence should take place. Of course if you are using a black and white
television set you will only see grey shades not the colours indicated!

Blue and red flashing border until the program is encountered.

Blue and red flashing stripes in the border area followed by the name of the
program being loaded.

A burst of yellow and blue stripes as the program is being loaded.

A message at the bottom of the screen telling you that it has loaded ‘OK’.

The ZX Spectrum has now loaded the program into the computer
memory. To make the program work you now have to tell the computer to
RUN it. This is done by keying RUN, which is on the R key. When

12



ENTER is pressed the program should work. If you have loaded a games
program for example it should then instruct you how to play the game.
The complete dialogue produced by this loading procedure is shown in
Figure 2.2. Leaving out the program name in the above procedure always
causes the first program encountered on the tape to be copied into the ZX
Spectrum memory. If there is only one program on the cassette ZX
Spectrum, the name of the program can be omitted. Thus to load the first
program from the cassette key in LOAD > then ENTER. By using the
program name in the loading command, a program that is not first on the
cassette can be automatically loaded by issuing a single command. Bear in
mind that if no program on the cassette bears the name you use, a long wait
must be endured while the ZX Spectrum searches fruitlessly. Generally, it
is sensible to have programs recorded on short C12 cassettes, and to have
one program, but certainly not more than two, recorded on each side.

The keyboard

As we have seen, most of the keys have a number of functions attributed to
them. Some of the keys produce special effects, such as clearing the
screen, while many of the keys have drawing symbols on them. The
special effect and drawing symbol keys are explained in this section.

Figure 2.2 Dialogue after loading the program “Wraptrap” from cassette.

Program:uuraptrap

13



Because the ZX Spectrum uses single keys to enter its BASIC
commands the computer requires one of these at the beginning of each
line. Therefore it is not possible to type directly to the screen immediately.
These keywords are indicated by the inscription on each key. For
example, if the letter P is depressed while the cursor displays the ‘reverse
K’ then the instruction PRINT will appear.

As the keyboard mode is so important to understand it is useful to
summarise what happens.

The flashing character is called the cursor. It shows you whereabouts
on the screen the computer will put the next thing that you type. If you
turn the computer off and on and then press ENTER, the copyright
message will change into a K cursor. The letter that it uses tells you how
the computer will interpret the next thing that you type. At the beginning
of a line, it will be a flashing K, standing for ‘keyword’. (The copyright
message and reports also count as a flashing K.) A keyword is one of the
computer’s special words, occurring at the beginning of a command to
give the computer a general idea of what the command is going to tell it to
do. Since the computer is expecting a keyword at the beginning of a line,
when you press — say — the P key, the computer decides not to interpret
this as a P, but as PRINT; and it warns you that it is going to do this by
making the cursor a K. When it has the first keyword, it does not expect
any more of them, so what you type now will be interpreted as letters. To
show this, the computer changes the cursor to an L — for ‘letter’.

These different states are often called modes — e.g. keyword (or K)
mode, and letter (or L) mode.

If you want to type a number of capital letters without holding capital
shift down, you can make all letters come out as capitals by first pressing
CAPS LOCK (capitals shift with the 2). To show this is happening, the L
cursor will be replaced by a flashing C (for ‘capitals’). To get lower case
letters and the L cursor back, press CAPS LOCK a second time.

If you do this during keyword mode, you will not immediately notice
any difference, but you will still see the effect later when the computer
comes to choose between L and C.

As well as keywords, numbers and various programming and scientific
expressions, the keyboard also has eight graphics characters. These
appear on the number keys 1 to 8, and can be printed on to the screen in a
similar way to letters and numbers. To do this the keyboard must be
changed to graphics mode. This is done by pressing the capitals shift key
with the 9. Notice the cursor change to a ‘G’; pressing the 9 key will change
back to ‘L’ mode.

There is one last mode that the keyboard can be changed to. The
extended mode, indicated by a ‘E’ in the cursor, is obtained by pressing

14



capitals shift and symbols shift at the same time. This allows most of the
scientific and programming functions to be used. Pressing the two shifts
will revert the keyboard back to lower case letter, L, mode.

The keyboard itself is colour coded. To get the red words on the keys
entered you have to use the symbols shift key with the key containing the
word. We have already seen this with the ” symbol on the P key. The green
keywords on the metal above the keys are obtained using the E mode,
whilst the red keywords below the keys are obtained by using the E mode
with a shift key. For example to get the INT, press both shift keys and
then the R key. To get the VERIFY keyword press both shift keys and
then the R key with the CAPS shift key. Although this may seem strange
at first a little practice will soon allow you to use the keyboard very easily.

The number keys work a little differently from the letter keys and their
operation is discussed in Chapter 4 covering graphics.

CONTROL keys

We have already seen that there are a number of control keys on the
Spectrum that do not actually cause characters to be written on the screen,
although they do cause things to happen inside the computer. There are a
number of others that do the same thing.

The BREAK and RUN keys

The BREAK key is used to stop a program that is being RUN by the
Spectrum. The RUN key causes the program that is in the Spectrum’s
memory to be executed.

The DELETE key

Pressing the DELETE key causes the character to the left of the cursor to
be deleted and moves the cursor one place to the left. This can be used
with the edit keys.

The CLS key
This causes the screen to be cleared. It can be used in a program or
directly. It moves the cursor to the bottom left hand of the screen.

The cursor control keys

These keys permit the cursor to be moved around the screen, when editing
is performed, in indicated directions. The screen contents are not changed
as the cursor is moved.

The GRAPHICS key )
Holding down the CAPS SHIFT key and pressing the 9 key causes a G

15



cursor or graphics cursor to appear in the cursor position. The graphics
symbols can then be used to compose pictures of surprising detail and
complexity. Figure 2.3 shows a ‘space invader’ drawn on the ZX
Spectrum screen together with the drawing symbols from which it is
composed.

Editing

Editing is very simple, but can only be performed on a listed program.
This feature is considered later, when simple programming is performed.

Giving simple commands to the ZX Spectrum

The ZX Spectrum can be used in a mode in which it obeys individual
commands given to it at once. These commands have to be expressed in
the BASIC language. A few commands of this kind, including LOAD and
RUN, have already been introduced.

Generally speaking, what a computer does in most situations is to
accept and store information of some kind, manipulate or process it, and
then give the results in some appropriate form. Individual aspects of this
can be illustrated by performing them with single commands. For

Figure2.3 ‘Space Invader’ and the graphics characters from which it is made. T~

%
1m
L St

16



example, a string of characters can be stored in the ZX Spectrum’s
memory by typing on a new line

LET a$ = ““Nicholas and Jonathan”

and pressing the ENTER key. Pressing ENTER causes the ZX Spectrum
to execute this command, which it does by giving the name a$ to a part of
its memory in which it then stores the string of characters between the pair
of inverted commas. The result of the command is illustrated in Figure
2.4. Thus, this BASIC command can be read in plain English as ‘store the

Figure 2.4 A string stored in the memory.

Memory a$

Nicholas and Jonathan

string of characters between the inverted commas in a part of the memory
and give it the name a$’. Note that spaces count as characters just as much
as letters do. When this command is executed, there is no outward sign
that anything has happened. To demonstrate that the command has been
obeyed, we need to know how to get at the information that has just been
stored. We can print out the information stored in the a$ by typing:

PRINT a$
and when ENTER is pressed, the ZX Spectrum prints on its screen
Nicholas and Jonathan

The BASIC instruction can be understood as ‘print out what is stored in
a$’. Now BASIC has some features which enable us to manipulate strings
of characters. By using the TO instruction it is possible to pick off
characters within the string. Typing:

PRINT a$ (1 TO 8)

and pressing ENTER causes the ZX Spectrum to print:
Nicholas

while

17



PRINT a$ (14 TO.« )
and pressing ENTER causes the ZX Spectrum to print:
Jonathan

The last command can be read as ‘print the last eight characters of the
string of characters stored in a$’.

We have seen that BASIC makes it easy to dissect character strings,
and it is just as easy to build them up. To illustrate, after storing two
character strings by typing:

LET s$ = “sky”

and pressing ENTER and:

LET t$ = “train”

and pressing ENTER again, the command:

PRINT s$ + t$

gives, when ENTER is pressed,

skytrain -

This command means ‘print the string stored in s$ followed by the string
stored in t$’. It is possible to dissect the string by using the slicing
technique available with ZX Spectrum BASIC. For example PRINT s$ (1
TO 2)+1t$(4 TO 5) gives on pressing ENTER

skin

In similar fashion it is possible, using these two stored words to get the ZX
Spectrum to print out the words ‘inky’, ‘tray’, ‘stain’, ‘strain’, ‘stinky’ and
several others. What happens is that only those letters of the string

identified by the numbers in the brackets get used. So s$ (1 TO 2) are the
first and second letters of s$ and t$ (4 TO 5) gives the fourth and fifth of t$.

The ZX Spectrum as a calculator

The ZX Spectrum can be used like a calculator in its simple command
mode. If it seems to be a rather expensive calculator, remember that this is
only one of the ways in which it can be used.

The number keys are situated to the top of the keyboard. The symbol
* is used for multiplication to avoid confusion with the letter X, and / is
used for division because division sums must be typed out on one line.

18



Arithmetic calculations can be performed by commands such as:
PRINT 2+3+4

which causes the answer to be printed, when ENTER is pressed, as
9

Similarly

PRINT (2%3+4)/5

gives, when ENTER is pressed

2

Numbers can be stored by
LETa=3

LETb =4

The result of this in memory is represented in Figure 2.5. Then

Figure 2.5 Numbers stored in the memory aftera = 3: b= 4.

Memory a b

PRINT a

gives

3

while

PRINT a*xb+8
gives

20

Printing pictures

Character strings can be made up with graphics characters, and the
PRINT command can be used to generate pictures. The command

PRINT “<><><><>"

19



causes the pattern to be printed out. The characters in the string are
alternately shifted R’s and T’s. This PRINT command produces output
which is all on one line. Cursor control characters cannot be used in a
character string, but this shortcoming can be overcome by the graphics
commands explained in Chapter 4.

It can be extremely difficult to see what keys to press in order to type
out character strings which contain graphics characters. For this reason a
convention is adopted to indicate these characters. The conventional way
to represent a graphics character is, for example, to show a shifted 4 by
[~4]. A sequence of six shifted 4’s is represented by [6”"4]. Thus the
character described would refer to a graphics character that had a black
square in the bottom right hand corner of the character block. Inverse
graphics characters are indicated by a double shift, i.e. [ * 4] would give
the opposite of the former character, that is, a black shape filling ¥4 of the
character block. Other special characters, including the cursor control
characters, are represented as shown in Figure 2.6.

Figure 2.6 Symbols

for graphics and Key Convention

control
Clear screen [A CLS]
Graphics shifted ‘3’ [A3]
Graphics shifted ‘e’ [ne]
Graphics shifted ‘3’
with caps shift [AAZ]
Cursor down [CD]
Cursor up [CU]
Cursor left [CL]
Cursor right [CR]
Space [SPC]
Graphics shifted space [ A SPC]
Delete [DEL]

To indicate more than one of the above, a number
may be placed inside the brackets, e.g. [4 CL].

One method of drawing more complex graphics characters is to
combine graphic strings with the AT command. If we remember that the
screen is divided into 22 lines and 32 columns a character may be placed in
this ‘grid’ by the PRINT AT line, column; ‘string’ command. Like most
string commands they can be run together.

It is useful to use the CLS command in between the following
examples as the screen will get rather cluttered otherwise!

20



To draw a diagonal row of four stars, for example, the command
PRINT AT 0,0;%"; AT 1,1;"%”; AT 2,2;"%”; AT 3,3;“%".

Note that the line and column numbers start at 0,0 not, 1,1. Keying
ENTER will make the pattern appear. Now key CL.S and then ENTER to
clear the screen.

The command to generate an open square in the middle of the screen
would be:

PRINT AT 10,15; “[~ "4] [~3] [~ 7]7; AT 11,15; “[~ A5] [SPC] ["5]7;
AT 12,15; “[~A A1) [AAB] (M1 2)7

Key ENTER. Now key CLS.
(See Figure 2.7.)
The ‘Space Invader’ character described earlier can be generated by

PRINT AT 10,15; “[A~6] [A "8] ["6]"; AT 11,15; “[~~6] [A3][~6]7;
and keying ENTER.

Figure 2.7 Two PRINT commands and their results.

21



Summary ..

A good way to become familiar with the ZX Spectrum’s keyboard is to run
a games program which requires responses to be made from the keyboard.
A program can be loaded into the ZX Spectrum’s memory from either a
cassette or a disk by following the straightforward procedure initiated by
giving the LOAD command. Once a program is loaded it can be run. So,
when starting to use the ZX Spectrum, it is a good idea to go out and buy a
few games programs and then to load and run them.

Most of the keys on the ZX Spectrum’s keyboard cause the
corresponding symbol to appear on the screen when they are pressed, as
you would expect. However, there are some keys which are used to obtain
a particular effect, such as clearing the screen or moving the flashing
cursor. A little experimentation with the keyboard soon gives an
appreciation of the functions of most of the keys.

Commands can be given directly to the ZX Spectrum in its own
BASIC language. With the aid of just a small repertoire of commands, it is
possible to instruct the ZX Spectrum to perform such diverse activities as
storing and manipulating words, storing and manipulating numbers, and
drawing pictures.

Self-test questions

1. What is the command which starts the procedure for loading a
program into the ZX Spectrum from a cassette?
2. What commands will cause the ZX Spectrum to store the words ‘lead’
and ‘pose’? Using these stored words only, give commands to produce the
words
‘plead’, ‘posed’, ‘please’, ‘lose’, ‘addle’

and as many others as you can find.
3. Give commands to cause the ZX Spectrum to store the numbers 4 and
5. Give commands involving these stored numbers only, and operations
on them, which produce the results 16, 24 and 36.
4. Devise PRINT commands to produce the following pictures:

(a) a right-angled triangle,

(b) an octagon, and

(¢) a diamond mesh.

22



PR

Chapter 3
Introduction to
programming

Writing and running a simple program

A program is a sequence of instructions for the ZX Spectrum to obey. The
language in which the instructions must be written in order that the ZX
Spectrum may respond to them is called BASIC, and a few examples of
individual BASIC instructions have already been introduced in the
previous chapter. BASIC is a simple programming language that was
devised at Dartmouth College in the USA and which first came into use in
the early 1960s. It was intended to be easy to learn and to teach, and its
overwhelming popularity as a language for microcomputers stems from
the fact that it is easy to learn.

The ZX Spectrum first deals with a program by storing it, and then it
can execute the program when commanded to do so. When a program is
stored in the ZX Spectrum it can be executed as many times as desired, or
it can be modified prior to running it again. If a BASIC instruction is
preceded by a number, the ZX Spectrum treats it as an instruction
belonging to a BASIC program and stores both the number and the
instruction. The instruction is not executed at this time, but is only stored.
The ZX Spectrum uses the numbers attached to the instructions to order
the instructions in the program which they make up. The instruction with.
the lowest number is the first in the program and so on. Thus, a ZX
Spectrum program consists of a set of instructions ordered according to
their associated numbers.

Now let us write a short program to store the three words ‘the’, ‘dog’
and ‘show’, and to use these stored words to write out the phrases ‘the dog
show’, ‘show the dog’ and ‘dog the show’. Before starting it is a good idea
to type:

NEW ENTER

because this clears any program previously stored in the ZX Spectrum.
Then type in this program exactly as shown, pressing the ENTER key at
the end of each line to cause it to be stored in the ZX Spectrum.

23




10 LET a$ = “the [SPC]”
20 LET b$ = “‘dog [SPC]”
30 LET c$ = “‘show [SPC]”
40 CLS

50 PRINT a$ + b$ + c$
60 PRINT c$ + a$ + b$

70 PRINT b$ + a$ + c$

In this program, the three words are stored at lines 10 to 30, but note thata
space is included at the end of each word to act as a word separator when
the phrases are printed. Line 40 causes the screen to be cleared when
executed because printing a ‘clear screen’ character in a program has the
same effect as pressing the ‘clear screen’ key when using the keyboard in
the normal way. In fact, all the control keys behave in this way. Lines 50 to
70 cause the required phrases to be printed. Figure 3.1 shows the
consequence of executing each instruction of the program. The result of
executing the program is the cumulative effect produced by executing
each of its instructions.

To demonstrate that the program has been stored by the ZX ‘ 

Spectrum, key
LIST ENTER

in response to which the ZX Spectrum always lists the program it is
storing. Check the listing given on the ZX Spectrum screen against the
listing above to see that they agree exactly, and, if they do, execute the
program by typing: RUN, then ENTER:

the dog show
show the dog
dog the show

Remember that as the program is stored in the ZX Spectrum it can be
executed or listed as often as you like. If a line of the program has been
entered incorrectly, itcan be corrected by listing it on the screen and using
the EDIT function.

If you make a mistake when entering a program or any other
command, it is quite a simple matter to change it. All lines being entered
into the computer are typed in on the bottom two lines of the display.
Normally these lines cannot be used for display purposes, and are not
included in the display area. So although the screen can show 24 lines of 32
characters only 20 of those lines can be used. These are known as the

24



-

PAPER area of the display. The area outside of this is called the BORDER
area. Whenever you press a key you enter information into the bottom of
the BORDER area, and outside the PAPER area.

You will have seen already the operation of this when using a PRINT
command for example. The chapter on colour graphics will deal with this
in greater detail.

If your mistake is in the area where commands are entered then the
cursor control keys will cause the cursor to move in tiiis area. For example
type in:

PRINT “FFred” (yes with the two F’s)

This is obviously wrong. Use the CAPS shift key with the <« key on the
5 to move the cursor to the left. When the cursor is just to the left of the
first F press the DELETE key (0) and the redundant F will disappear.
Now type:

Hello [SPC]

Figure 3.1 The resultsof running a program.

70 PRINT b +a$+c$

PROGRAM MEMORY INTERMEDIATE PRINTED
CONTENTS COMPUTATION ON THE
AFTER SCREEN
EXECUTING
INSTRUCTION

10 a$ the (SPCY a$

the ﬁ

20 bs dog” b$
[0 J=—

30§ show” c$
[ J—

A CLS Clear the screen

a$ + b$ + c$

H0 PRINT a$+b$+c$ the dog show
the dog show
60 PRINT 6§ +a%+b% c$ + a$ + b§ show the dog

show the dog

b$ + a$ + c$

dog the show

dog the show

25



and push ENTER. The screen should now display:
Hello Fred

So it is possible to insert text as well as deleting it. The fact that all keys
have an automatic repeat function makes this very easy.

Things are slightly different though if a program has been entered.
The program can be listed using either the LIST command or by pressing
the ENTER key. If there is a mistake in one line, for example if line 30 had
been entered as:

30 LET c$ = “‘shows [SPC]”

then the redundant ‘s’ needs to be cleared. As you have been entering
programs you may have noticed a forward facing arrow >’ between the
line number and the text that you have just entered. This is the line cursor
and indicates the last line entered. Pressing the EDIT key (CAPS shift 1)
will bring this line down to the editing area. It is possible to move this
editing cursor around. LIST the last program and then use the cursor
control keys 1 and | to move the editing cursor up or down to the line
you require. Pressing EDIT will now bring that line down for editing.
Program lines can be easily replaced. Typing:

30 LET ¢$ = “house [SPC]”

and pressing ENTER causes this line to replace the previous line 30, as.
listing will confirm. To delete a line, all that is necessary is to type the
number of the line to be removed followed by ENTER. Try typing:

60 ENTER

and then list the program to see the effect it has had. When you have
finished experimenting with the program, key

NEW ENTER
to delete it. After typing this, the LIST command evokes no response.

Some more BASIC Lnstructlons

In this section we meet a few more BASIC instructions. They are
incorporated in short programs to illustrate their usefulness. The fact that
the ENTER key has to be pressed after a command or at the end of an
instruction to cause the ZX Spectrum to take the appropriate action will
not be mentioned explicitly any more. As a last reminder, if you have
typed something out and nothing appears to be happening as you sit and
wait, it may well be that you have not pressed ENTER.

26



Input

Suppose that we should like to modify the program given in the first
section of this chapter so that it accepts any three words we might care to
give it when we run the program, and then prints out the first one followed
by the second and the third, then the third followed by the first and
second, and finally the second followed by the first and third. The new
instruction that we need to make a program accept an input is INPUT.
When an INPUT instruction is executed it causes a question mark to be
printed on the screen to indicate that a response is required, and then it
makes the ZX Spectrum wait until the user types a response which it then
accepts. Thus, the instruction:

10 INPUT a$
produces the question mark and then if the user types:
the

the word ‘the’ is accepted and stored in a$. So, in this case, the effect is the
same as that of the instruction:

10 LET a$ = “the”

However, the latter always makes the same assignments to the variable a$
whereas the former can assign whatever the user types.
The required program is:

10 CLS

20 INPUT a$

30 INPUT b$

40 INPUT c$

50 PRINT a$ + b$ + c$
60 PRINT c$ + a$ + b$
70 PRINT b$ + a$ + c$

When this program is executed it could result in a dialogue such as the
following:

? the [SPC]
? kit [SPC]
? bag [SPC]
the kit bag
bag the kit
kit the bag

27



Decisions

The ZX Spectrum can be programmed to make decisions, and this ability
can be used to produce some very interesting programs. The instruction
which permits decision making is the IF-THEN instruction. It has the
form:

IF condition THEN instruction

where in the condition part variables and/or values can be compared,
typically to see if they are the same or if they differ, and the instruction
part is a BASIC instruction, for example an assignment or a PRINT
instruction. When executed, the condition part is tested and if the
condition holds the instruction part is executed: if the condition does not
hold the instruction part is not executed. An example of this kind of
instruction is:

IF n$ = “password” THEN PRINT “‘accepted”

When this is executed, the ZX Spectrum tests if the most recent
assignment to n$ is ‘password’: if it is, ‘accepted’ is printed out, otherwise
nothing is done. A second example is:

IF.n$ <>"password” THEN PRINT ‘“rejected”

In this example the pair of symbols <> mean ‘not equal to’. Thus when
this instruction is executed ‘rejected’ is printed only if the most recent
assignment to n$ is not ‘password’.

Now consider a short program to create a sum, display it, accept an
answer to it and decide if the answer is correct or not prior to printing an
appropriate message. This requirement is also shown in Figure 3.2 which
is an example of a flow chart. The program could be:

10 LETa =2

20 LETb = 3

30 PRINT “what is [SPC]": a; “+"; b: “?”
40 INPUT ¢

50 IF ¢ = a + b THEN PRINT “Good. That is correct”
60 IF c<>a + b THEN PRINT “No. The answer is [SPC]"; a + b

@&

Using a semicolon to separate the items in a PRINT instruction gives a
different spacing than when they are printed out using a comma. Using a
semicolon causes the characters inside the statement to be printed one
after the other. A comma causes the items to be printed out in two
columns, the second column starting in the middle of the screen.

In listing programs so far each separate statement has been given a
separate line number. It is possible to join many different statements on

*

28



4

Il

one line separating them with a colon. For example, the first two lines of
the program above could have been written as

10 LETa=2:LETb =3

This clearly makes programs shorter, and in some cases can make them
run faster.

The program can be adapted to give the user more than one attempt to
find the answer, in the way illustrated by Figure 3.3 overleaf by using the
GOTO instruction. The instruction

GOTO 30

means go to line 30 and execute that line next. A program that expects the

Figure 3.2 Flow chart for simple maths drill program.

( BEGIN ’

\

CREATE SUM

/

\ DISPLAY SUM \

Y

\ ACCEPT ANSWER \

ANSWER
CORRECT?

YES_

CORRECT ANSWER

\ PRINT “NO" AND DISPLAY \ \ PRINT “ANSWER CORRECT" \

29



user to attempt to answer until the correct answer is given, is:

10 LETa =2

20 LETb =3

30 PRINT “What is [SPC]"; a; “+"; b; “?”
40 INPUT c

50 IFc =a + b THEN GOTO 80

60 PRINT “Sorry, wrong answer. Try again”
70 GOTO 30

80 PRINT “Good, that is correct”

A typical dialogue produced by this program is:

What is 2+37?
?76
Sorry, wrong answer. Try again

Figure 3.3 Flow chart for improved maths drill program.

( BEGIN )

[ CREATE SUM

Y DISPLAY SUM \

\ ACCEPT ANSWER \

\ PRINT “NO. TRY AGAIN" \

NO /NSVR YES
- CORRECT?

\ PRINT "ANSWER CORRECT" \

\

( STOP ’

30



What is 2+3?

?4

Sorry, wrong answer. Try again
What is 2+3?

?5

Good, that is correct

Repetition

The previous program has shown that the ZX Spectrum can be
programmed to do things repeatedly by using the GOTO instruction. The
problem is posed repeatedly until the correct answer is given. BASIC has a
more direct way to achieve repetition, though, and that is by the use of the
FOR-NEXT instructions. To illustrate their use, the program:

10 FORi=1TO 16
20 PRINT “Joanne”
30 NEXT i

causes ‘Joanne’ to be printed sixteen times, because all the instructions
between the FOR and NEXT are repeated as many times as directed by
the FOR instructions. In this case the FOR instruction directs the ZX
Spectrum to do the first repetition with i=1, the next with i=2 and so on
until the last repetition, with i=16, has been done. The next program
illustrates that we can put as many instructions as required between the
FOR and NEXT.

10 FORk=1TO9

20 PRINT ‘““‘Repetition number [SPC]”; k
30 PRINT “Fred”

40 PRINT

50 NEXT k

This causes nine repetitions and produces the output:

Repetition number 1
Fred

Repetition number 2
Fred

and continues up to the ninth repetition.

We can now write a program to accept a word and spell out its letters
one at a time. The program must accept a word, find its length and then
repeatedly pick out and print the first, second and so on to the last letter. It
works like this:

31



n$ (x TO x) or n$ (x) finds the xth letter of n$.
We now have all the equipment we need to write the program:

10 PRINT “Enter a word, please”

20 INPUT w$

30 LET | = LEN w$

40 FORi=1TO|

50 PRINT “Letter number [SPC]"; i; “[SPC] is [SPC]"; w$ (i)
60 NEXT i

In line 30 the instruction LEN w$ determines the number of characters in
the string w$.

More programs

Let us write a program to accept any name written in the form:
James Joyce

and to produce the output /\
Your first name is James |
Your surname is Joyce

{

This may seem very easy at first sight, since after INPUT n$ the first name
is given by n$ (1 TO 5) and the surname by n$ (7 TO 11). Unfortunately,
this will produce nonsense if the name entered is Patrick Campbell, for
example. What we actually need to do is to locate the position of the space
separating the two parts of the name. Then, assuming that the name has
been entered correctly, everything to the left of the space is the first name
and everything to the right is the surname. If the name is not entered in the
way we expect, strange results can still be printed, so it is sensible to
request that the name be entered in a standard fashion, and then to check
the entered name, rejecting it if it does not conform. This reasoning leads
to the following program:

10 CLS .

20 PRINT “Enter your name, please. Type”
30 PRINT “your first name, then one space”
40 PRINT “then your second name”

50 INPUT n$
60 LET | = LEN n$
65 LETc =0

70 FORi=1TOI

’

32



80 IF n$ (i) = “[SPC]” THEN LETc =c + 1
90 NEXT i
100 IF c<>1 THEN PRINT “Please enter your name as requested”
110 IF c<>1 THEN GOTO 20
120 FORj=1TO/|
130 IF n$ (j) = “[SPC]” THEN LET b = j
140 NEXT j
150 PRINT “Your first name is [SPC]”; n$ (1 TO b)
160 PRINT “Your surname is [SPC]”; n$ (b TO I)

In this program the screen is first cleared, lines 20 to 40 cause the
instructions for using the program to be printed on the screen, and then
line 50 accepts a name and stores it in n$. Line 60 stores the number of
characters in the name in 1. Line 65 sets to zero ¢, which will be used to
count the number of spaces in the name. Lines 70 to 90 scan each character
of the name, counting the number of spaces. At the end of the repetitions
the number of spaces in the name is held in c. If there is not exactly one
space in the name, then lines 100 and 110 indicate that the entry is not
satisfactory and cause a return to line 20 to permit the name to be entered
again. Lines 120 to 140 locate the position of the space, storing it in b, so
that line 150 can print all the characters to the left of the space as the first
name and line 160 can print all those to the right as the surname.

Our next program produces a rather fascinating mobile display of a
worm-like object which moves backwards and forwards across the screen!
The program starts by clearing the screen. The worm shape is stored in a$
at line 30; it is preceded by 25 spaces and followed by one space. Lines 50
to 70 cause it to move from left to right along the fourth line by repeatedly
printing increasingly longer strings taken from the right of the string, that
is, by printing the worm preceded by more and more spaces. Lines 80 to
100 move it in the other direction. In a FOR command such as the one in
line 40 no step is mentioned, so 1 increases from 4 to the value of 1-1 in
steps of one. However, at line 70 a step is mentioned so the value of j for
the first repetition is the value of —1: this value is changed by —1 until the
value 4 is reached for the last repetition. If the space at the end of the string
in line 20 is removed, the shape will leave a trail when it moves from right
to left which is eaten up again during movement in the opposite direction.
The mobile display program is:

10 CLS

20 LET a$ = “[25SPC]% % *[SPC]”
30 LET | = LEN a$

40 FORi = 4 TO (I-1)

50 PRINT AT 3,0; a$((1—i) TO 1)

33



60 NEXT i

70 FOR|j = (I-1) TO 4 STEP —1
80 PRINT AT 3,3; a$ ((I-j) TO I)
90 NEXT j

100 GOTO 40

Because the last line of the program always causes line 40 to be executed
again, starting another pass across the screen and back by the worm, the
program runs indefinitely when executed. To stop it, it is necessary to
press the BREAK key.

We shall now develop a program to translate French words to their
English equivalents. To do this, we shall need to store French words and
the corresponding English words in such a way that they can be related.
To do this, it is useful to introduce the idea of an ‘array’.

In the previous section the command PRINT a$(i) was seen to print
out the ith character of the string a$. By introducing the concept of the
array it is possible to let many different strings of characters have the same
designation. Clearly we must therefore have two variables in the statement
defining the strings, one saying how many there are and the other telling
the computer how much space to allocate to their storage. This is done by
the use of the DIM statement. ;

If you type ‘

DIM a$(4,5)

then this tells the Spectrum that there will be four strings called a$(1) to
a$(4) with a maximum length of five characters. The DIM command gave
the resulting array of characters its dimensions.

As the following program shows, arrays can be used to advantage in
FOR-NEXT loops. In this program we shall use two arrays, as illustrated
in Figure 3.4, with one holding English words and the other holding the
equivalent French words in the same order.

The program is

5 DIM w$(1,11)
10 DIM e$(4,5)
20 DIM f$(4,11) =
30 LET e$(1)="“man”:LET $(1)="homme”
40 LET e$(2)="woman”:LET {$(2)="‘‘femme”
50 LET e$(3)="boy”:LET $(3)=*garcon”
60 LET e$(4)="qirl":LET {$(4)="jeune fille”
70 PRINT “Enter French word”
80 INPUT w$(1)
90 LET t=0

34



100 FORi=1TO 4

110 IF w$(l)=1$(i) THEN PRINT e$(i)

120 IF w$(l)=f$(i) THEN LET t=1

130 NEXT i

140 IF t=0 THEN PRINT w$(1); “[SPC] is not in my vocabulary”
150 GOTO 60

Figure 3.4 Two parallel arrays for translation program.

e$(1) e$(2) e$(3) e3(4)
e$ man woman boy girl
£$(1) $(2) f$(3) 1$(4)
f$ homme femme garcon | jeune fille

Clearly, as written here, the program possesses a very limited
vocabulary, but this can be extended in a straightforward way. Also, it is
not difficult to adapt the program so that it translates from English to
French.

All the programs presented in this section can be used as vehicles for
experimenting with programming in BASIC. They can be amended,
extended and improved in many ways.

Saving programs

A program that is stored in the ZX Spectrum can be saved using a cassette
unit so that it can be loaded again another day. When the ZX Spectrum is
switched off everything stored in it is lost. To avoid having to type a
program in every time you want to use it, and to preserve a record of it, it is
necessary to copy it on to some form of permanent storage.

Saving a program on a cassette

To save a program stored in the ZX Spectrum on cassette, ensure that the
cassette unit is attached to the ZX Spectrum and put a cassette in it.
Completely rewind the tape and then wind it forward a little to avoid
trying to record on the tape leader. If you are using a tape recorder with a
counter you may wish to have more than one program on a cassette, in
which case wind the tape so that no wanted programs are recorded over.

35



When the tape is in the right position decide on a name for your
program. For example let us call the previous program ‘translator’. Itis a
good idea to have only the MIC lead in. Some tape recorders do strange
things with their EAR sockets and some of the signals from this may upset
the computer if they get through. Set the record level about half way to its
maximum and key the SAVE key followed by ‘translator’, making sure the
quotes are included. A message will be displayed saying ‘Start tape, and
press any key’. The screen will then give a display similar to that when
loading a program, i.e.:

5 seconds of red and pale blue stripes in the border area
A short burst of blue and yellow stripes

1 second of nothing

2 seconds of red and pale blue stripes

another burst of yellow and blue stripes

and then the message that it has loaded OK. However do not take this as
being correct. This message only means that the sequence was completed
successfully. It is advisable to VERIFY the program. This is done by
rewinding the tape to where the recording started and keying VERIFY (E
mode shifted R). Pressing the PLAY key on the recorder, and making
sure that the EAR sockets are now connected, will compare the program
on the tape with that in the computer. The ‘OK’ message means that the
recording was perfect. If this message does not appear then the best thing
to do is follow the checklist printed on page 23 of the Sinclair Introductory
Booklet. Any number of things could have gone wrong, from the wrong
recording levels to the plugs not being in correctly.

Using the printer

The addition of the ZX printer to the ZX Spectrum can enhance it
considerably. Initially, the main uses for a printer are perhaps to provide
program listings and to print results in a permanent and convenient form.
A program listed on paper is not only a convenient record, but can also be
taken away from the ZX Spectrum and studied at leisure. If a program
produces a lot of results, it is more convenient to print them out than to
copy them from the screen: it is much more reliable, too.

After the initial precautions of ensuring that the printer is attached to
the ZX Spectrum, switched on and loaded with paper, the program stored
in the ZX Spectrum can be listed on the printer rather than the screen by
giving the command: LLIST.

36



To illustrate how the printer can be used from a program, the simple
program from the beginning of this chapter is modified so that as well as
giving the same output on the screen as it did before, it also produces
identical output on the printer.

10 LET a$ = “the [SPC]”
20 LET b$ = “dog [SPC]"
30 LET c$ = “‘show [SPC]"
40 CLS

50 PRINT a$+b$+c$

60 PRINT c$+a$+b$

70 PRINT b$+a$+c$

80 LPRINT a$+b$+c$

90 LPRINT c$+a$+b$
100 LPRINT b$+a$+c$

One additional useful feature of the ZX Spectrum is the ability to copy
the contents of the screen directly to the printer. Take the previous
program, for example. The same result could have been achieved just by
using the COPY command, and lines 80, 90 and 100 could be left out. If
the screen still has the results of that program type COPY and see what
happens. (The BREAK key will be needed to stop wastage of paper!)

The COPY command is very useful when using the ZX Spectrum
graphics capability, as it is far easier to draw graphics characters to the
screen than to LPRINT directly to the printer.

Summary

The ZX Spectrum can store a BASIC program which can then be executed
as often as required, or which can be modified before it is run again. The
ZX Spectrum’s BASIC language is a simple English-like language which
provides, among other things, facilities for storing and manipulating
information, making decisions and for repeating an action as often as
necessary. In this chapter these facilities are introduced and incorporated
in simple programs to illustrate ways in which they can be used. When a
program has been written, it can be saved on cassette. The way in which
this is done is described.

Self-test questions

1. What is the command to start the procedure for saving the program
stored in the ZX Spectrum on a cassette?

37



2. What are the BASIC words used for:
(a) repetition,
(b) making a test and acting on the result, and
(c) giving data to a program while it is running?

3. Write short programs for the following:
(a) to print your name 10 times;
(b) to enter a word and decide if it has more than 7 characters. If it has
more than 7 characters, indicate that a long word was entered,
otherwise print that it was a short one;
(c) to accept a word repeatedly and then print it out without either its
first or last letter.

4. Explain in the way illustrated in Figure 3.1 the computations
performed when the following programs are executed.

(a) 10
2

30
40
50

(b) 10
15
20
25
30
40
50
60
65
70

LET a$ = “ALGORITHMIC”

0 LET | = LEN a$

FORi=1TO|I
PRINT a$ (1 TO )
NEXT i

LET a =1

LET b =1
PRINT a

PRINT b
FORiIi=1T0O 12
LETc=a+b
PRINT ¢
LETa=»>b
LETb=c¢
NEXT i

5. Write a program to accept a word, store it in a$ and then create in b$
the reverse of the word. This can be done by startlng with a string of zero
characters in b$, and then addmg one character at a time from the right of
a$. The program should print the reversed word and then decide if the
original word is a palindrome, that is, if it reads the same forwards and
backwards.

A typical dialogue from the program might be:

Enter a word, please.

?madam

The reverse of madam is madam
madam is palindromic.

38



Chapter 4

Graphics

Most of the programs written for the ZX Spectrum that are of lasting
interest and value make good use of graphics. The interest and
compulsion of games and educational programs usually lie in the
attractiveness of their graphics. Business programs can be much more
effective than otherwise if they present information and results in pictorial
as well as numerical form. Of course, some numerical computation is
necessary in any reasonably complex program, whatever its application,
and the results from it can be presented in one of three ways: with
numbers, in words or by pictures. While in some applications it is
essential to have accurate numerical results, in many others the numerical
presentation of results inevitably becomes rather dull sooner or later. To
present information using words is better, but books are better for reading
from than video screens. Anyway, as everybody knows, a picture is worth
a thousand words, and pictorial presentations are much more natural and
informative than their alternatives.

As we have seen, graphic displays are achieved on the ZX Spectrum by
placing graphics characters on the screen in such a way as to make up the
required image. As shown in Figures 4.1 overleaf and 4.2 overleaf, the
screen has 22 rows each with 32 character positions, and there is a
repertoire of some 16 graphics characters. On the face of it, it might seem
that only a limited range of pictures could be generated within this format,
but as many existing programs have shown, and as the programs
presented in this chapter demonstrate, displays of surprising complexity
and detail can be produced. Some patience and ingenuity may be required
to produce them, but a little knowledge and some effort are really all that is
needed to start. Many people find investigating and using the graphics
facilities of the ZX Spectrum one of the most interesting aspects of
programming. The inclusion of good graphic effects has certainly been a
major reason for the success of many of the better programs written for the
- ZX Spectrum, and will also help to ensure that new programs become a
source of lasting pleasure and usefulness.

Methods of typing pictures on the screen and of generating simple
patterns by using the PRINT command have been introduced in previous
chapters. However, the ZX Spectrum supports another method which
makes it relatively easy to produce graphic displays. This method is
explained in the following sections. ,



The screen and memory

To provide a straightforward way of producing a graphic display from a
program, the ZX Spectrum screen is divided up into even more picture
elements, or pixels, than the number of rows and columns. As each
character can be made up of 8 X 8 elements or pixels, each graphic
position on the screen corresponds to a position in a 256 by 192 grid. By
placing the coordinates of this location in a PLOT command, the
appropriate character automatically appears in the corresponding screen
position. Thus, producing a graphic display actually becomes a ‘mapping’
exercise.

Figure4.1 Chartshowing position of characters and pixels.

) ANEXAMPLE THIS|S
COLUMNS ————- ; THE PIXEL (191, 159}

© + oz 3 4 5 6 7 8 g 10 11 12 13 14 15.16 17 18 18 20 21 22 23 24 25| 26 27 28 29 30 3

O 8 16 24 32 40 a8 56 64 72 BO BB G5 104 112 120 128 136 144 152 160 168

7 15 23 31 39 47 55 g3 71 79 87 95 103 111 119 127 135 143 151 159 167 175

YOUCANNOT NORMALLY PRINT ORPLOT

ONTHE BOTTOM TWO LINES
PIXEL X COOADINATES ————

18 e |22 [2 {0 158 [56 [62 {7z |50 [88 (96 [102 [172 [120 [128 [136 {144 (152 160 [168 |76 [184 192 [200 |208 [216 [224 |232 [240 |24
7| ssi 23] ai as] a7| ss| es| 71 7a| e7) ss| o3| ti) 18] 1e7} 13s| 143| v51| 159| t67] t7s] 183] 191) 199] 207| 215| 223] 231| 239] 247) 255)

L

PIXEL Y CODRDINATES ———

Figure4.2 Graphics characters and their associated keys.

GRAPHICS
MODE
WITH
CAPS SHIFT

GRAPHICS B
:

MODE
KEY

]
L]

™l
> | "
- ll|®

d w F
=l




Putting a character on the screen

The ZX Spectrum BASIC command which enables displays to be
produced on the screen is the PLOT command. The operation of this
command can best be explained by an example. The command:

PLOT 127, 88

causes a dot to be placed in the middle of the screen.

Producing a drawing

A ‘space invader’ is an artificial image in the sense that it takes its form
because of the available graphics characters rather than having a shape of
its own that is modelled, or approximated, using the graphics characters.
In this section a procedure for sketching a shape on the ZX Spectrum
screen is described. It demonstrates that recognisable sketches can be
produced, while at the same time showing that the resolution of the ZX
Spectrum’s display causes some problems regarding the accuracy of the
sketch.

Suppose we want to draw the butterfly shown in Figure 4.3a overleaf
on the ZX Spectrum screen. To do this, draw a square grid over it, as
shown in Figure 4.3b, and then for each square of the grid in turn find the
graphics character or pixel most closely approximating it. The result of
this is shown in Figure 4.3c and the outline of the butterfly as it will be
drawn on the ZX Spectrum screen is shown in Figure 4.3d. Finally, the
positions for the graphics symbols are determined and a program to
generate the picture is written. The simplest method of creating the
‘butterfly’ image would be to use the PRINT AT command:

PRINT AT 10, 19; “[2A A3]"; AT 11, 10: “[2A A8] [2/ A3] [3SPC]
[AA3][2M N8I [MN4]7 AT 12,10; “[A 7] [3N A8 [AA3][A 78] [N N3]
[3A 18] [AA5]%: AT 13, 11; “[9AA8]"; AT 14, 11; “[A3] [6A A8
[AA]7 AT 15,115 “[AB] [2A A8 [ M) [MAB] [AT7][27 A8] [~ A5]7;
AT 16, 11; “[M] [2~ 78] [~2] [SPC] [~ 1] [~ A8] [~ A 4]

This is, however, rather tedious, especially with more complicated
programs. A more interesting method is to put the coordinates of the
appropriate pixels into a string and then, using the string slicing
techniques considered previously, let a program do the hard work. Try
this as an exercise.

It is possible to write directly to the memory locations reserved by the
ZX Spectrum for storing the screen image. Each character position
occupies a direct position in the memory, and the codes indicating the
shape of that character can be entered from the keybodrd. Unfortunately

.

41



Figure4.3 (a)Butterfly. (b) Butterfly with grid. (c) Butterfly composed of graphics characters. (d) Outline of image
plotted on screen.

this is not as simple in the ZX Spectrum as with other systems, and it
involves writing in the computer’s machine code. For those readers
interested in this aspect of programming, various books are recommended
in the bibliography.

The display produced by this program is shown in Figure 4.4. The
problems of resolution can be tackled in a number of ways. The simplest is
to stand further away from the ZX Spectrum’s screen, letting your eye and
brain integrate and resolve the image as its fine detail becomes less clear!
More active measures include using a smaller grid to cover the image,
which gives more squares and more data for the drawing program. The
positioning of the grid is important; the details which are vital from a
recognition aspect should be captured as accurately as possible. Finally, a
little artistic licence in the design of the displayed image may also help
considerably.

The ZX Spectrum does have a number of tricks up its sleeve to make
life fairly simple. For example, it is possible to draw a straight line from
one place to another using the DRAW command. The Spectrum assumes
that the place where it last drew a line to has the coordinates 0,0. So the left
hand bottom corner starts with coordinates 0,0 after the screen has been
cleared. The DRAW command has the form:

42



Figure 4.4 Burterfly as displayed on the screen.

DRAW x.y

where the x-part tells the Spectrum how many pixels to the right to go and
the y part tells it how many pixels to go up. So type:

DRAW 100,100

and you should see a line going diagonally across the screen from the
bottom left hand corner up towards the top right hand corner. Now type:

DRAW 0,50

and this will make the line go up 50 pixels.
If you want the line to go down then you have to give it a negative value
of x. So now key:

DRAW -50,-20

and the line will now come down to the left. Play around with the draw
command until you are happy. Note that the Spectrum will not let you go
outside its screen area of 256 by 176 pixels, and that because they start
from the value 0,0 the highest value of x and y is that of the top right hand
corner, i.e. 255,175. A command:

DRAW 255, 175

43



after a CLS command should draw a line from bottom to top.

Another useful command is CIRCLE. Like DRAW this places a circle
on the screen at-a point determined by the values of the x and y
coordinates. But being a circle we need to tell the Spectrum its radius. So
the CIRCLE command has the form:

CIRCLE x,y,r

where r is the radius in pixels. CIRCLE does not take into account where
the last pixel was plotted and assumes that x and y are relative to the
bottom left hand corner. Type:

CIRCLE 100,100,50

and the Spectrum will draw a circle in the middle of the screen. Play
around with this command and see if you can make some pretty patterns.
DRAW and CIRCLE can be put into BASIC programs. The next program
draws a series of circles up the screen:

10 FORr = 0TO 50 STEP 5
20 CIRCLE 4%r,2%r,r
30 NEXTr

It is also possible to get a straight line to turn through a curve. A third
argument to the DRAW command tells the Spectrum how many degrees
the line should turn through. Unfortunately the computer does not like
degrees but uses a measure of angle called the radian. One radian is about
57°. A complete circle has 2% pi radians. So to get a line to turn through
half a circle, or to draw a semicircle type:

PLOT 127,88: DRAW 50,50,PI

This command starts the line at the centre of the screen with the PLOT
command and then tells the computer to draw a semicircle from 127,88 to
177,138, i.e. a radius of 25.

Using these commands it is quite simple to get a smiling face on the
screen:

CIRCLE 127,88,50: CIRCLE 105,100,5: CIRCLE 149,100,5: CIRCLE
127,88,10: PLOT 100,76: DRAW 54,0,2

44



Screen patterns
The screen can be filled with a particular symbol by the program:

10 FORy = 0 TO 21
20 FOR x = 0 TO 31
30 PRINT ATy, x; “*”
40 NEXT x

50 NEXTy

When the character at each screen position is generated in some systematic
way, patterns that are both informative and aesthetically pleasing can be
produced.

A general scheme which can be used to give a wide variety of
interesting patterns involves the three stages of computation,
classification and representation. A value is computed for each position on
the screen using its row and column number. The value is then classified
by assigning it to one of a number of classes. Each class is represented by a
particular character. In this way a character can be obtained for, and
plotted in, each screen position. This process is, essentially, that used to
make a coloured contour map where the height of each point is measured
(computed), classified into the appropriate height interval and then
represented on the map by the colour assigned to that interval. A general
program scheme for generating screen patterns in this way is given in
Figure 4.5 overleaf. The program scheme can be refined to give a program
such as the following:

10 LET a$ = “1+$:”
20 FORI=0TO 21
30 FORc=0TO 31
40 LET h = c*xc + Ixl

50 IF h<80 THEN LET i =1
60 IF h>80 THEN LETi =2
70 IF h>400 THEN LET i = 3
80 IF h>800 THEN LET i = 4

90 PRINT AT I,c;a$(i)
100 NEXT ¢

110 NEXT |

120 GOTO 120

In this program, the codes for the plotting symbols are read into the string

a$ in line 10. Lines 20 to 40 describe the computing, classification and

plotting for each screen position. The computation gives a value for h in

line 40, the classification is done at lines 50 to 80, and the plotting at line

90. To illustrate, for the screen position in line 10 and column 10 the value
.

45



200 is computed, this produces a value of 2 for i, and so the second plotting
symbol is placed in this position. The screen display is shown in Figure
4.6. )

Figure4.5 Program scheme for screen patterns.

( BEGIN )
————| FOREACHLINE |

IlAND FOR EACH COLUMN IN THE LINE

COMPUTE A VALUE USING THE LINE
NUMBER AND THE COLUMN NUMBER

/

CLASSIFY THE VALUE, ASSIGNING IT
A CLASS NUMBER i

| PLOT CHARACTER i IN CURRENT POSITION

NO
END OF LINE?

YES

NO
LAST LINE?
YES

( STOP ’

46



A second program following the same program scheme is:

10 LET a$ = “£%/*=+—-1%"
20 FOR1=0TO 21

30 FORc =0TO 31

40 LET h = (Ixc) 1 (1/3)

50 LET i = INT(h)+1

60 PRINT AT I,c;a$(i)

70 NEXT c

80 NEXT |

90 GOTO 90

Here, there are nine intervals and plotting symbols. The computation
gives | % c raised to the power 1/3, i.e. the cube root of 1 * c. The value is
classified at line 50 by finding its integer part. As an example, take the
position in row 10 and column 12: this gives | * ¢ = 120, the cube root of
120 is 4.932 and its integer part is 4. So the fourth plotting symbol is
placed in this position.

A wide range of patterns can be produced by using this method. In
general, a distinct pattern results from each choice of computation,
classification and set of plotting symbols chosen to represent the classes.
Classification can be achieved in many ways other than dividing a range of

Figure 4.6 Screen pattern.

\
/

R R S I r O
B+ + b+t o
W+ +F+ b b
WRF+++ A+ H o o e
W+ 4+ 4+ bt
W+t 4+ 4+ HH
WR+F++++++++++++ HHHH
WA+ +++++++++4 4+ HH
WA+ ++++ 4+t bbb b
BPBRBR+++++ b4+ 4+ 44444+
BRRB+ ++++++++F++++ 4+ 4+
BARRB++++E+++ 44+ 44+ + 4+
HABRPB+ ++++++++++++++4++
PRRARAR+ ++++++++++++ 4+ +
HRABRBR A+ ++++++++++++++
BRARRARR A+ ++ +++++ 4+ ++++
RRARBERBRRF +++++++++++ +
WRAD R AR RRBR S+ + +++++++ 4+
BRRARARARRBRA A+ + -+ ++++
A RRR R ARR R R R RRRSR
U1 4 A LR A A 4 L A AR R 4+
A AR AR AR AR AR AR R R R R

A -4 4 A A AR AR AR A A AR R D AR

AR G- R 4R AR AR 4R AR AR 4R 4R
AR R R A A R

R AR R AR R AR

S AR AR R R

: AR R R R R

B  h

47



values into interval$, for example the number in the first place after the
decimal point in the computed value can be used to give the class number.
The selection of the plotting characters is vital to presenting the patterns
effectively. The characters chosen for the last two programs are intended
to accentuate the transition from one class to another, but other characters
may prove more effective or attractive.

Colour graphics

One of the most exciting features of the ZX Spectrum is its ability to
handle colour. Each 8 X8 block of pixels that make up each character can
be defined in terms of two colours. One is called the PAPER colour and the
other the INK colour. In normal circumstances PAPER is white and INK
is black. It is very easy to change this. Type:

BORDER 2

and the border should change to red. The colour is indicated above the
appropriate number key. There are eight colours ranging from black to
white as shown on the keys.

Now type:

PAPER 2 R

and key ENTER twice. (You need to press it twice as the colour of the
PAPER and INK only change when the screen needs to be ‘reformatted’).
Now type:

INK 1
and ENTER twice. Now type:
PRINT “Blue letters on red background”

and ENTER. You should see just that . . . although if your television is not
very good all you will get is something approximating to it. This is a very
important point. Most modern televisions will accept the sort of television
signals coming from computers. Unfortunately some do not. It is not
noticeable on black and white but as soon as colour is used things start to
go wrong. If you have persistent problems then you will have to get your
local television shop to adjust it internally.

Try other combinations of INK and PAPER to see the effects.
Obviously if INK and PAPER are the same colours you won’t see
anything!

Now it is possible to use the graphics characters to make some
interesting pictures. We must remember that the most colours allowed in
each character block is two, although all eight colours can be on the screen

48



at the same time. The following program illustrates this point. It draws a
series of lines across the screen. As the screen fills up they get broader.
When a pixel is plotted it is set to show the ink colour so the whole of that
character block has its ink colour defined by the current ink colour.

10 BORDER 0: PAPER 0: INK 7:CLS
20 LET x = 0: LETy = 0: LET i = 1

30 LET a = INT (RND * 256): LET b = INT (RND * 176)
40 DRAW INK i; a—x, b—y

50 LETx=a:LETy =b

60 LETi=i+1:IFi=8THENLET =1

70 GOTO 40

In this program the background is set to black and a random length line in
colour 1 is drawn. Next time round another random line is drawn in colour
2, and so on until the ink colour becomes 8, which it cannot be so it is set
back to 1.

Another program will draw the ‘space invader’ character but in yellow
on a black background:

BORDER 0: PAPER 0: INK 6: PRINT AT 10, 15:* [~ A6] [~ A8] [ 6] :
AT 11, 15; “[A A6] [A3] [6]”

Movement

Once static displays can be produced, it seems natural to progress to the
generation of moving displays. The program presented in this section
makes it possible for the user to control the movement of a shape on the
screen. Besides being fascinating in itself, this program illustrates the
techniques used in many games programs.

In the better games programs written for the ZX Spectrum, a standard
arrangement for movement under user control has emerged. It involves

the use of numeric keys, and is illustrated in Figure 4.7. The number 7
key is used for vertical movement. The number 6 key is used to indicate

Figure4.7 Control keysand directions.

E.G. TOMOVE UP PRESS 7: DIRECTION INDICATED BY ARROW.

{ o[o
o) 6 W \7 k)



that movement is réquired downward, and similarly with the other two
keys.

This program allows the user to draw lines on the screen. The cursor
keeps moving in a certain direction until changed by the user. The
program scans the keyboard to see if a control key has been pressed, and, if
one has been, it directs the cursor appropriately. When the cursor is
situated with reference to a screen position, Ic, the changes in Ic that are
required to achieve movement in any direction are shown in Figure 4.8.

10 LET x = 10
20 LETy = 16
30 PRINT AT x, y; “%”

40 IF INKEY$ = “5” THEN LET y = y—1

50 IF INKEY$ = “6” THEN LET x = x+1

60 IF INKEY$ = “7” THEN LET x = x—1

70 IF INKEY$ = “8" THEN LET y = y+1

80 GOTO 30

Figure 4.8 Screen locations and directions.
p—1,¢c-1 -1, ¢ -1, c+1
I, c—1 lc I, c+1
I+1, ¢c—1 1+1, ¢ I+1, c+1

There is no mechanism in this program to detect the edge of screen,
and it will ‘crash’ if allowed to hit the side.

It is possible to make the star move without leaving characters where it
has been by inserting a line deleting its previous position. This is easily
done by plotting a ‘space’.

50



Add the following lines:

35 LET m = x
36 LETn=y
75 PRINT AT m, n; “[SPC]”

The flashing display is caused by the alternating star and space being
plotted.

If the program is to take into account the sides of the screen then the
following lines can be added:

76 Fx =22 THENLETx =0
77 IFx = —1 THEN LET x = 21
78 IFy =32 THENLETy =0

79 IFy = —1 THENLETy = 31

These lines detect whether the star is over the boundary, and if so make it
loop round the ‘back’ of the screen and make it appear at the other end of
the line.

Animation

Displaying still pictures at a sufficiently high rate produces the illusion of
continuous movement. All moving-picture systems, including films and
television rely on this effect which depends on several human
characteristics, including the persistence of vision. The program
presented in this section achieves a mobile display by plotting successive
static images in precisely the same way as a moving-picture is produced by
showing successive still pictures. The major problem in achieving realistic
mobile displays is to generate the successive static images quickly enough.

The following program produces a very simple animated display. It
should be possible to get the butterfly ‘flapping’ its wings. However this is
a very complex program when written in BASIC. The display is very
Yjerky’. If programmed in machine code then the display is more effective.
With the BASIC in the ZX Spectrum it is still possible to get some
movement on the screen. Figure 4.9 overleaf shows a flow chart that can be
used for working out a program. Let us look at making a ‘space invader’
cross the screen. See Figure 4.10 overleaf.

10 CLS

20 LET a$ = “[2~"8]"

30 LET b$ = “[4~18]"

40 LET c$ = “[2SPC]"

50 LET d$ = “[~ 8] [2SPC] [~ ~8]"

51



60 LET e$ = “[27N 78] [N7] [~ ~4] [2~ 18]”
70 LET f$ = “[2AA8] [AN4] [A7] [2~ 18)”
80 LET g$ = “[~ 18] [4SPC] [~ 78]”

400 LETx =7

410 LETy =2

420 GO SuB 1000

430 LETy =y + 1

435 CLS

440 GO SUB 2000

450 LETy =y + 1

455 CLS

460 GO SUB 3000

Figure4.9 Flow chart for mobile display program.

STORE FRAME 1

|

STORE FRAME 2

Y
STORE FRAME 3

1

—>1 PLOT FRAME 1

Y
PLOT FRAME 2

| q
PLOT FRAME 3

1
—— PLOT FRAME 2

52




470
475
480
495
500
510
1000

1010
2000

2010
3000

3010

LETy =y + 1

CLS

GO SUB 2000

CLS

IFy <29 THEN GO TO 420

STOP

PRINTATx,y;a$;ATx+ 1,y —1;b$;ATx +2,y —2;e$;ATx +
3,y —2;1$;ATx+ 4,y —1,b$;ATx + 5,y;a$; ATx + 6,y — 1;
d$; ATx + 7,y — 2;g$

RETURN

PRINTATx,y;a$;ATx+ 1,y — 1;b$;ATx + 2,y — 2;e$; AT x +
3,y —2;f$;ATx+ 4,y — 1;b$; ATx + 5,y;a$; ATx + 6,y — 1;
d$; ATx+ 7,y —1;d$

RETURN

PRINTATx,y;a$;ATx + 1,y — 1;b$;ATx + 2,y — 2;e$; ATx +
3,y —2;1$;ATx+4,y —1;b$;ATx + 5,y;a$;ATx+ 6,y — 1;
d$; ATx+ 7,y — 2; a$

RETURN

Figure 4.10 Two ‘Space Invader’ frames from animation program.

53



This program slfows how animation can be achieved, although it does
not work quickly enough to give the illusion of continuous movement.
There are several ‘methods for speeding up the plotting of the frame
sequence. For instance, it is quicker to plot the changes necessary to
convert one frame to the next rather than to plot entire frames all the time.

User definable graphics

The Spectrum allows the users to define their own characters. The letter
keys can be given graphics characters just like the number keys. For
example say that the ‘a’ key be defined to give the shape of a little man.
Remember that the character has to be defined in a 8 X8 matrix. Figure
4.11 shows how this could be done. The Spectrum uses the BIN command
to enter this into the memory. The POKE command is also used. The BIN
command is a method of putting binary numbers into the computer. If we
let the INK colour in our character be a 1 and the PAPER colour be a 0,
then the little man can be written as:

BIN 00111000
BIN 00111000
BIN 00010000 Sl
BIN 00111000
BIN 01111100
BIN 10111010
BIN 00101000
BIN 01101100

Figure4.11 8 X 8 graphics grid — and how to translate a ‘man’ into BIN numbers.

oot 11000
0o0ot1t1 1000
0 001 0oO0OO
0ot 11 000
o011 11 100
i 01 11 010
0 01 11 00O
o110 1 100

54




This takes up eight memory locations in the computer’s memory (each
location can store eight ones or zeros). To get them in and also tell the
computer that we want this character to be associated with the ‘a’ key
requires the following sequence:

POKE USR “a” + nBIN ........

where n is the row we are putting in starting with 0 and going to 7, and the
numbers after BIN the 1s and Os for that row. If this process is gone
through eight times you should find that when the ‘a’ key is pressed in the
G mode the character should appear. Now let us move it around the
screen. Type:

10 FORx = 1TO 31

20 PRINT AT 10,x;"“[~a]”

30 PRINT AT 10,x—1;"[SPC]”
40 NEXT x

Again, try experimenting with some of these ideas.

Dynamic simulation

The final program in this chapter provides a dynamic simulation of a
system that experiences random growth and decay. It displays a
community that grows initially from a single cell. When it reaches a
certain size it decays to a lower level and then fluctuates between those two
levels. The display can be taken as a simulation of the growth of a town or
of a community of insects. The random element is provided by the BASIC
feature RND. A figure at the bottom of the screen gives the generation of
the community. This program is:

5 LETg =0

10 DIM a (9,9)

20 DIM b (9,9)

30 FORI=2TO 8

40 FORc =2TO 8

50 IF RND >0.5 THEN LET a (I,c) = 1

60 LET b (I,c) = a (I,¢)

70 NEXT c: NEXT |

80 FORI=1TO 9

90 FORc =1TO 9

95 PRINT AT 21, 15; g
100 LET a (I,c) = b (I,¢) ,
110 IF a (I,c) = 1 THEN PRINT AT | + 5, ¢ + 10: “%”

L ]

55



120 IF a (I,c) = O-THEN PRINT AT | + 5, ¢ + 10; “[SPC]”
130 NEXT c: NEXT |

140 LET g = g +'1
150 FOR1=2TO 8

160 FORc=2TO 8

170 LETx =10

180 IFa(l—1,¢c— 1) =1THENLET x = x + 1
190 IFa(I—1,c)=1THENLETx—x+1

200 IFa(l—1,¢c+ 1) =1THENLET x = x + 1
210 IFa(,c — 1) =1 THENLET x = x + 1

220 IFa(l,c) =1 THENLET x = x + 1

230 IFa(,c+ 1) =1THENLET x = x + 1

240 IFa(l+1,¢c—1)=1THENLET x = x + 1
250 IFa(l+1,¢c) =1THENLET x = x + 1

260 IFa(l+1,c+1)=1THENLET x =x + 1
270 IFa(l,c) = 1 AND x <>3 AND x <>2 THEN LET b (l,¢c) =0
280 IFa(l,c) =0ANDc =3 THEN LET b (I,c) = 1
290 NEXT c: NEXT |

300 GOTO 80

Sound

The ZX Spectrum has a very basic sound generator. (See Figure 4.12.) It
gives a BEEP when the appropriate command is given. The form of the
command is:

BEEP d,p

where d is the duration of the note in seconds and p is the pitch of the note
relative to middle C. The first two lines of ‘Three Blind Mice’ can
therefore be entered as:

BEEP 1,4: BEEP 1,2: BEEP 2,0: BEEP 1,4: BEEP 1,2: BEEP 2,0

Figure4.12 How to get notes using BEEP command.

HERE IS ADIAGRAM TO SHOW THE PITCH VALUES OF ALL THE NOTES IN ONE OCTAVE ON THE PIANO:

C#
D
1 15

-3 —1 0 2 4 5 7 9 11 12 14 16

[+ D E F G A 8 [¢]

TOGETHIGHER OR LOWERNOTES, YOUHAVE TO ADD OR SUBTRACT 12 FOR EACH OCTAVE THAT
YOU GO UP ORDOWN.

56




The values of d and p can be fractional, i.e. they do not have to be whole
numbers. p can also be negative so that notes below middle C can be
obtained. Only one note at a time is possible, and although the sound is
rather quiet . . . some might say mercifully so . . . coming out of the
internal speaker, the signal also appears at the EAR socket and can be
plugged into a ‘hifi’ system if required.

One useful thing to know is that the audible feedback given when any
key is pressed can be changed from the ‘click’ normally apparent when the
system is used to enter data, etc. By POKEing location 23609 the length of
the click can be altered, so that POKE 23609, 255 for instance gives a
distinct sound. The length of the sound is determined by the number after
the 23609.

57



Chapter 5

Special features of the ZX
Spectrum

In this chapter, information about the ZX Spectrum and some of its
special features not mentioned in previous chapters is collected together to
provide a reference chapter. It is not intended to be an exhaustive
collection of information about the ZX Spectrum: there are other books
which provide that. It does include the features that are of interest to the
person starting to use the ZX Spectrum and to anyone wanting an
appreciation of its main features.

Specification of the ZX Spectrum

Manufacturer:
Microprocessor:
Video output:

Keyboard:

Memory size:
Languages:
Graphics repertoire:
Peripherals:

Programs:

Sinclair Research (UK)

Z80A

UHF TV signal giving 24 rows of 32 characters,
or 256 x 192 pixels

22 rows are used for display, 2 for information
40 keys, soft touch keyboard

16K bytes, 32K bytes expansion RAM

When switched on, ZX BASIC is available

16 graphics characters, eight colours

ZX printer and cassette deck. Other
peripherals include

Programs are available from a wide range of
commercial sources for applications that can be
classified as mainly business, educational or
entertainment. Applications not falling
comfortably into these categories include
computer-aided design and program
development

59



An ‘exploded view? of the ZX Spectrum

Figure 5.1 shows a photographic view of the various parts that make up the
ZX Spectrum. The keyboard is similar to that of a typewriter. Since these
external features are familiar, most of the description in this section is
devoted to the inside of the ZX Spectrum. Incidentally, while indicating
the positions of components, a little more computer jargon can be
introduced and explained.

Inside the ZX Spectrum are the electronics required to produce the
screen display, a voltage regulator and all the electronic components that
make up a microcomputer. The external power supply unit is necessary to
convert the 240 volts alternating current from the mains supply to the 9
volts needed by the computer electronics. The regulator makes sure it
stays at a steady value. The most convenient way to mount and
interconnect the large number of components of the microcomputer is by
using a printed circuit board. This has copper tracks laid down on it to
connect the mounts into which the various chips are to be inserted. The
layout of the printed circuit board reveals the essential structure of the
microcomputer.

Mounted on the printed circuit board are the microprocessor itself, the
clock and various other chips. The memory that is avallable to the user,

Figure 5.1 Diagram of inside of ZX Spectrum showing chips, etc.

60



typically for storing BASIC programs and information, is provided by
‘random access memory’ chips, or RAMs. The information stored in this
type of memory can be accessed, and it can be replaced with other
information as required. When the ZX Spectrum is switched off, all
information stored in RAM is lost. Clearly, there are certain features of the
ZX Spectrum which may always be required, and which it should not be
possible to replace or lose when the ZX Spectrum is turned off. For
example, BASIC should always be available, and the characters to be
displayed on the screen may need to be generated at any time. These
functions are provided by chips with information permanently stored in
them. The chips are known as ‘read-only memories’ or ROMs. The
positions of the BASIC ROM and the character generation ROM are
shown in Figure 5.1.

Special features

In this section three of the more useful and interesting of the ZX
Spectrum’s features not so far introduced are described.

The ZX Spectrum’s clock

The ZX Spectrum has an in-built clock which can be accessed from a
BASIC program. The time on the clock is obtained by using the PAUSE
command. On a 50Hz system as used in Europe the command PAUSE n
will stop any program for n X 50 seconds. n has a maximum value of
32767, so the longest pause possible is 10 hours 55 minutes 21 seconds.
Unfortunately, if the PAUSE command is used in a program then the time
that the system takes to work out the program has to be added to the
PAUSE n value. For example:

10 LETs =0

20 PRINT AT 10, 15; s

30 LET s = s+1

40 IFs =60 THENLETs =0
50 IF s = 0 THEN CLS

60 PAUSE 20

70 GOTO 20

This program counts seconds and returns to zero at the end of one minute.
The number after PAUSE in line 60 has to be worked out by experiment.
As an exercise see if the hours and minutes elapsing can be displayed.
A more accurate method of counting elapsed time is by looking at the
contents of certain memory locations. It is quite complicated and involves
PEEKing the contents of three locations. The PEEK command is exactly
.

61



the opposite of POKE in this respect. The instruction:
(65536« PEEK 23674 + 256%PEEK 23673 + PEEK 23672)/50

gives the number of seconds since the computer was switched on. The
memory locations used are incremented by one each time the screen is
scanned, i.e. every 50th of a second. This expression can be incorporated
into a BASIC program if required.

Examining the contents of a location

We have seen that the contents of any location can be examined by using
PEEK. The command:

PRINT PEEK (16416)
prints the data stored in location 16416, while
LET x = PEEK (16397)

assigns the data stored in location 16397 to x.

Available storage
Atany time the amount of memory that is available can be found by using
the command: —

PRINT PEEK 23613 — PEEK 23653 + 256 % (PEEK 23613 — PEEK
23653) —100

This looks at the various memory locations used to tell the microprocessor
where things are. The calculation uses these parameters to give a rough
idea of the number of bytes left. (The information on the screen takes up a
discrete amount of space!)

It is also useful to know how much storage a program requires, as this
can prevent such frustrations as, for example, trying to read a program
requiring 18K of store on a 16K ZX Spectrum, or trying to extend a
program which uses almost all the available memory. The command:

PRINT PEEK 23627 + 256 *PEEK 23628 — 23755

gives the memory used by the program.

The user port

The way in which the expansion port can be used to connect the ZX
Spectrum to other equipment so that it can communicate with it, or
control it, is outlined in this section. A full treatment requires the use of
binary numbers and their arithmetic. There is nothing especially difficult

62




about this, but it lies beyond the scope of this book.

The user port is essentially an extension of the computer ‘bus’ — or
control data and address lines. There are also outlets for the power supply.
Peripheral units sit on this bus and communicate with the microprocessor
and the other electronics via it. The ZX printer also sits on the bus, and
data to be printed also travels along it. Each peripheral recognises its own
data by the address on the address lines. So it should be impossible for data
going to the printer to get mixed up with data going to and from the
memory.

As shown in Figure 5.2, the sockets for connecting the ZX Spectrum
to other devices are provided by connections at the edge of the printed
circuit board. The edge connector on the printed circuit board permits the
expansion of the ZX Spectrum.

Figure 5.2 Edge connector allocation.

THE CONTROL, DATA AND ADDRESS BUSSES ARE ALL EXPOSED AT THE BACK OF THE SPECTRUM,
SO YOU CANDO ALMOST ANYTHING WITHA SPECTRUM THAT YOU CAN WITH A Z80. SOMETIMES,
THOUGH, THE SPECTRUM HARDWARE MIGHT GET IN THE WAY  HERE IS A DIAGRAM OF THE
EXPOSED CONNECTIONS AT THE BACK:

IORQGE  VIDEO BUSRQ ROMCS A9
Al4 A12 5V 9V SLOT ov ov CK A0 A1 A2 A3 ov Y v o u RESETA7 A6 A5 A4 BUSACK A1
A15 A13 D7 SLOt Dv Dt D2 D6 DS D3 D4 NMI MREQ RD WR -5V +12v Mi A8 A10
iNT HALT IORQ WAIT —12v RFSH

How the ZX Spectrum stores a program

A BASIC program is stored in the ZX Spectrum starting at the location
given by the numbers stored in locations 23635 and 23636. Normally this
number is 23755, although if microdrives or any communications devices
are being used, this can change. It is stored as a linked list of program lines
as illustrated in Figure 5.3 overleaf. Each character and BASIC word is
represented by a code: a different code from that used in conjunction with
POKE is employed. Each line of the BASIC program is stored character
by character and BASIC word by BASIC word starting with the line
number. The end of the line is indicated by the length of the text value.
To give an example to illustrate this, the short BASIC program:

10 LETp =1
20 LETg=p + 2
30 PRINT p,q

is stored as shown in the following table.

63



TABLE 5.1

Location Character Location Character
number Code or BASIC word number Code  or BASIC word
23755 0 ; 23776 61 =
Line number 10
23756 10 ' 23777 12 p
23757 11 No of bytes 23778 43 +
23758 0 in line
23779 50 2
23759 241 LET 23780 " 5
number
23760 112 p
23781 0
23761 61 = 23782 0 2in
23762 49 1 23783 2 computer’s
23784 0 code
23763 14 number 23785 0
23764 0
23765 0 number 1 227:6 12 ENTER
23766 1 in computer's 787 line number 30
23767 0 code 23788 30
number of bytes
23769 13 ENTER 23790 0 4
23770 0 ) 23791 245 PRINT
Line number 20 —
23771 20 - 23792 112 P -
23772 13 No of bytes 23793 44 ,
23773 0 in line
23794 113 q
23774 241 LET
23795 13 ENTER
23775 113 q
Figure 5.3 How the ZX Spectrum stores a program.
FIRST LINE OF PROGRAM ALWAYS STARTS AT MEMORY LOCATION 16509.
/
LINE LENGTH
NUMBER OF TEXT OF BASIC STATEMENT
LINE
2 BYTES 2 BYTES |
ENTER
[
1BYTE
1BYTE IS ANOTHER NAME FOR 8-BITS OF INFORMATION (ALWAYS Tgl)i NUMBER

AND IS THE ‘COMPUTER WORD'

64




The form of this BASIC program when stored is illustrated in Table 5.1.
The codes for the characters and BASIC words can be observed by using
PEEK to examine the area in which the program is stored.

Programs are stored in this way to facilitate the procedures by which
the ZX Spectrum stores program lines in the correct order regardless of
the order in which they are entered, and subsequently, deletes or inserts
lines as required.

Special locations

The next table lists the special locations in the ZX Spectrum’s memory
that have been referred to in this and previous chapters. It also describes
the purpose for which these locations are used.

TABLE 5.2
Location
numbers Purpose
23732 Address of last byte of the BASIC system area
23617 Cursor mode k, I, g, core
23621 Line number of statement currently being executed
23625 Number of current line
16384 Address of start of screen memory
23560 o Shows which key has been pressed
23637 Address of next program line to be executed
23672 Counts the number of frames displayed on television
23677 x-coordinate of last point PLOTted
23678 y-coordinate of last point PLOTted
23296 Printer buffer
23562 Delay (in 50ths of a second) between repeats on a key
(normally 5)

65



Appendix F

Further reading

This appendix gives some books and magazines that are suitable for
further reading to follow up particular topics that are mentioned,
introduced or developed in this book. They are mainly for the ZX81; the
programs can be ‘adjusted’ quite easily — see Appendix 2.

General books

1. The Gateway guide to the ZX81 and ZX80 by Mark Charlton (Database
Consultancy, 1981).

A good introductory book aimed at those wanting to get involved with
programming. Lots of games programs.

2. Hints and Tips for the ZX 81 by Andrew Hewson (Hewson Consultants,
1981).
Contains many routines useful for programmers. Display explained in

detail.

3. Getting acquainted with your ZX81 by Tim Hartnell (Database
Consultancy, 1981).
Many programs with some useful information scattered through the text.

4. Understanding our ZX81 by 1. Logan (Essential Software Company,
1981).

Illustrates all the attributes of the ZX81 Monitor, how it works, and how
to use it in writing useful programs.

Games

5. 50 Rip-roaring games for the ZX80 and ZX 81 by Jeff Weinrich (Database
Consultancy 1981).
The title says it all!

6. 49 Explosive Games for the ZX81 by Tim Hartnell (Interface, 1981).
Galactic Intruders, Breakout, Draughts, Star Trek, etc., etc.

7. 30 Programs for the ZX81 . . . IK (The Essential Software Company,
1981).

As the title explains this book contains 30 games for the ZX81, and also
some useful hints and advice on writing programs.

66




Programming

8. Stretching your ZX81 or ZX80 to its limits by Tim Hartnell and Trevor
Sharples (Computer Publications, 1981).
Information on how to improve programming efficiency.

9. Learning BASIC with your Sinclair ZX80 by Robin Norman (Newnes
Technical Publications, 1981).
BASIC programming for the ZX80 with the new 8K ROM.

10. ZX81 BASIC Book by Robin Norman (Newnes Technical
Publications, 1981).
Covers the 1K and expanded 16K versions of the system.

11. BASIC Programming for the ZX81I by Ian Stewart and Robin Jones
(Shiva Publishing, 1982).

Covers most of the features in Sinclair, BASIC, and also contains 50 games
programs.

Education

12. Educare’s 50 by K. S. Goh (Educare, 1981).
Fifty programs that can be used in education, all aimed at the primary
school market.

Machine Code

13. Mastering machine code on your ZX81 by Tony Baker (Interface, 1981).
A very comprehensive look at the inside of the computer. Not for the
faint-hearted or inexperienced!

Applications

14. The Sinclair ZX81 — programming for real applications by Randle Hurley
(Macmillan, 1981).

From word processing, through home banking to education . . . a book for
those wanting to go beyond playing games.

Magazines

15. Sinclair User (ECC Publications, 30-31 Islington Green, London N1).
A magazine aimed at the beginner.

67



16. Interface (44-46, Earl’s Court Road, London W8 6EJ).

Monthly magazine of the National ZX80 and ZX81 User Club. Started off
with some useful ideas. Since taking in the Acorn Atom seems to be
suffering from a kind of journalistic schizophrenia!

17. Computer and Video Games (EMAP, 8 Herbal Hill, London EC1).
Many games programs for ZX81 users.

18. Computing Today (ASP, 145 Charing Cross Road, London W1).
Monthly general purpose computer magazine with lots of news, games
and reviews.

68




Appendix 2

Differences between ZX81 and ZX Spectrum BASIC

The ZX81 and the ZX Spectrum are essentially very similar computers. A
few differences do occur within the BASIC. If machine code is considered,
though, then there are great differences and it is not easy to convert such
programs. This means that some of the books in the previous appendix
will be of only general use.

READ, DATA, RESTORE

The ZX Spectrum has the BASIC commands READ, DATA and
RESTORE. The ZX81 does not. Many ZX81 programs that need this
construction use string arrays to overcome the problem. Another method
is to use a whole series of LET statements. Any programs for the ZX81
using either of these methods will run without any change.

SLOW and FAST

The ZX Spectrum does not need either of these commands that are found
on the ZX81. The Spectrum can be considered to have the speed of the
ZX81 in FAST mode with the screen attributes of SLOW mode.
Consequently these commands can be taken out of any ZX81 programs.

SCROLL

The ZX Spectrum scrolls automatically so the ZX81 command for this
effect can be taken out. The ZX Spectrum asks ‘scroll?’ every time the
screen is filled.

UNPLOT

UNPLOT does not exist on the ZX Spectrum. The nearest equivalent is
the PLOT OVER command. This only works on an individual pixel,
whereas the PLOT and UNPLOT commands on the ZX81 work on a4 x4
group of pixels. Some thought is necessary before programs are converted.



Graphics in general

The ZX81 has a similar screen size to the ZX Spectrum. So the PRINT
AT commands and positions are identical. The ZX81 has a larger pixel
size and thus only PLOTS on a 64x44 grid. This compares to the
256192 grid of the ZX Spectrum. The ZX Spectrum also uses a PLOT
command, but this applies to the individual pixel not to the 4x4 group.
Some thought must be given to the problems caused by this. For example
consider the following ZX81 program:

10 FORy = 12 TO 33
20 PLOT 31,y

30 NEXTy

40 FOR x = 15 TO 47
50 PLOT x,22

60 NEXT x

This program will plot a cross in the middle of the screen. The simplest
way to get the same effect with the ZX Spectrum is to use the OVER
command and the graphics symbols for the Y4 squares. The program then
becomes:

10 FORI=5TO 15

20 PRINT AT I,16:“[~ ~5]”

30 NEXT I

40 FORc = 10 TO 23

50 OVER 1: PRINT AT 10,c;"“[~ A 3]”
60 NEXT ¢

This is very much a simple example to indicate some of the problems
involved.

Character set

The ZX Spectrum uses a standard ASCII character set. The ZX81 uses a
non-standard set. Consequently any peripherals, like printer interfaces,
that contain electronic circuitry to convert the non-standard set will not
work on the ZX Spectrum.

Cassette compatibility

Finally there is absolutely no compatibility between the two cassette
recording formats. No ZX81 cassette can be used on the ZX Spectrum,

70




and vice versa. This does mean that a lot of good software will have to be
translated from the ZX81 to the ZX Spectrum. However with the interest
and ingenuity of those who made the ZX81 scftware marketplace so
exciting it is only a matter of time before this is rectified. No doubt
somebody will invent a small box of tricks that can be plugged in the back
and do the translating for us.

71



Appendix 3-

Glossary

Array

A block of sequential segments of memory reserved in a program by, for
example, DIM A$(BC). They are named, in this case, A$(1), A$(2) . . .
AS$(B) giving a set of names which can be used in the same way as ordinary
variable names, but with the convenience that they include a bracketed
index. C indicates the maximum length of the strings.

BASIC

The computer language available when the ZX Spectrum is switched on,
and in which commands to it are expressed. BASIC actually stands for
Beginner’s All-purpose Symbolic Instruction Code.

Byte
Strictly, a group of binary digits but for simplicity it can be regarded as a
memory location whose contents can be any one of 256 possibilities.

Chip
Literally, the chip of silicon from which an integrated circuit is fabricated,
but used popularly to refer to the integrated circuit itself.

Cursor
The flashing square on the ZX Spectrum’s screen which indicates the
position at which the next item will be displayed.

Database
An organised collection of data from which either data or the properties of
items of data can easily be retrieved.

Disk
A disk on which programs or data can be stored as magnetic patterns on

the surface of the disk, and from which recorded information can be
rapidly retrieved. Also known as a floppy disk.

DOS
Disk Operating System. A program to facilitate the storage of information
on disk and its retrieval from the disk.

ENTER

When the ENTER key is pressed at the end of a line, that line is sent to the
ZX Spectrum to be dealt with. For example, commands are then
executed, and program lines are stored.

72




Flow chart
A diagram indicating in stylised form the steps of a computation. Itis used

as an aid in developing programs.

Graphics
Pictures produced by a computer.

Integrated circuit
An electronic circuit fabricated in extreme miniature form on a silicon

chip typically a few millimetres square.

K
1K stands for 1 kilobyte of memory and gives the size of a memory

consisting of 1024 storage locations.

Machine code
The code in which instructions must be conveyed to a microprocessor in

order that it may respond to them directly.

Microprocessor
Physically, a very complex integrated circuit. Functionally, an electronic
device that can be programmed and can therefore perform a variety of

tasks.

Peripheral

Equipment that can be attached to the ZX Spectrum, and can be used in
conjunction with the ZX Spectrum because the latter can control it.
Examples are cassette units and printers.

Printed circuit board

A board on which conducting connections and sockets are mounted so
that it can support and interconnect electronic components and integrated
circuits.

Program
An ordered sequence of commands given to a computer so that when it
obeys them it automatically performs a specified task.

RAM

Random access memory. Memory whose contents are lost when the power
supply is turned off. The amount of RAM determines how much memory
is available for the user to store programs and data.

ROM
Read-only memory. This is permanent memory, typically used to store
information that is always required, such as that which provides BASIC.

.
73



This memory is net available to store the user’s programs: it provides
facilities required by the user.

Software '

Software means programs, although it includes utility programs as well as
the user’s own programs. This contrasts with hardware, which refers to
the physical equipment of a computing system.

User port
One of the connections at the rear of the ZX Spectrum, which can be used

to send or receive signals under the control of the user’s program.

Word processor
A system for processing textual material electronically and then printing it

or, perhaps, transmitting it to a similar system. In this context, the
processing is mainly editing.

74




Index

Animation S51-5
Applications 67

AT 20

Available storage 62

BASIC 37, 72
BEEP 56
Bibliography 66
BIN 54
BORDER 25, 48
BREAK 15, 37
Byte(s) 72

Calculator 18

CAPS LOCK 14

Cassette 5, 13, 14, 21, 35
compatibility 70
Character set 72
Chip(s) 61, 72

CIRCLE 44

Classification 47

CLEAR 15

Clock 60, 61 —

CLS 12, 15

C Mode 14

Colour graphics 48

Computer assisted learning 8

Control keys 15

COPY 37

Cursor 11, 14-6, 72
control characters 20
control keys 15, 25, 26

Database 72
systems 9

Data management systems 9

Decisions 28

DELETE 15, 25

Disk(s) 72

Disk drives 7

DIM 34

/ (Divide) 18

DOS 72

DRAW 42

Drawing 15, 41
Dynamic simulation 55-6

Ear sockets 36
Edge connector 61
EDIT 24, 26
Editing 16
Education 67
Educational use 8
E Mode 14-5
ENTER 12
Expansion 6

Flow chart(s) 28, 73
FOR . .. NEXT 31

Games 66

General books 66
Glossary 72

G Mode 14

GO SUB 52

GOTO 29, 31

Graphics 9, 39-56, 70, 73
Graphics keys 15

IF . .. THEN 28
Information retrieval systems
INK 48

INKEYS 50

INPUT 27

Inside the Spectrum 60

K Bytes 4, 73
Keyboard 1

functions 13
Keywords 14
K Mode 14

LEN 32
LET 17

75



Line cursor 26 e
Line numbers 24

L Mode 14

LIST 26

LOAD 12

Loading from cassette 12
L PRINT 37

Machine code 67, 73

Magazines 67

MIC lead 36

Microcomputer 1, 60
Microdrive(s) 63

Microfloppy 7

Microprocessor 3-5, 60, 62, 63, 73
Modes 14

Movement 49

* (Multiply) 18

NEW 23

PAPER 25, 48

PAUSE 61

PEEK 62

Peripherals 6-8, 63, 70, 73
Pixel(s) 40-4, 70

PLAY 12

PLOT 40, 69

POKE 54

PRINT 14, 17

PRINT AT 20

Printed circuit board 60, 61
Printer 7

Programming 67

76

RAM 61, 73
Repetition 31
RETURN 53
RND 355
ROM 61, 73
RUN 12

SAVE 35

Screen 1

Screen layout 11
Sinclair research 4
Sound 56

Special features 61
Special locations 65
Storing a program 63
Strings 17

Technical specification 59
TO 35

UNPLOT 69

User definable graphics 54.

User port 62, 74
USR 55

VERIFY 15, 36
VisiCalc 9
Voltage regulator 60

Word processor 74

ZX80 4

ZX81/Spectrum differences 70-2




